Câu hỏi:

11/07/2024 10,417

Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng AB = 6 cm và AC = 8 cm, hãy tính độ dài các đoạn thẳng BC, AH, BH, CH.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100

Nên BC = 10 cm.

Vì AH là đường cao trong tam giác ABC nên AH vuông góc với BC.

Tam giác ABC vuông tại A và tam giác HAC vuông tại H có:

\(\widehat C\) chung

Do đó, ∆ABC ∆HAC (góc nhọn).

Suy ra \(\frac{{AC}}{{HC}} = \frac{{BC}}{{AC}}\) nên CH = \(\frac{{C{A^2}}}{{CB}} = \frac{{{8^2}}}{{10}} = \frac{{32}}{5} = 6,4\) (cm).

Do đó, BH = BC – CH = 10 – 6,4 = 3,6 (cm).

Vì ∆ABC ∆HAC (cmt) nên \(\frac{{AB}}{{HA}} = \frac{{BC}}{{AC}}\).

Do đó, AH = \(\frac{{AB \cdot AC}}{{BC}} = \frac{{6 \cdot 8}}{{10}} = 4,8\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) HA . HD = HB . HE = HC . HF;

b) ∆AFC ∆AEB và AF . AB = AE . AC;

c) ∆BDF ∆EDC và DA là tia phân giác của góc EDF.

Xem đáp án » 11/07/2024 49,073

Câu 2:

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

a) ∆ABC ∆HAC và CA2 = CH . CB.

b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).

Xem đáp án » 11/07/2024 10,336

Câu 3:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) ∆BDF ∆BAC và ∆CDE ∆CAB;

b) BF . BA + CE . CA = BC2.

Xem đáp án » 11/07/2024 5,695

Câu 4:

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Xem đáp án » 11/07/2024 3,876

Câu 5:

Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:

a) ∆ANP ∆HBA và ∆MCN ∆MPB;

b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).

Xem đáp án » 11/07/2024 2,378

Câu 6:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:

a) AM . AB = AH2 và AM . AB = AN . AC.

b) ∆AMN ∆ACB.

Xem đáp án » 30/10/2023 1,655

Bình luận


Bình luận