Câu hỏi:
11/07/2024 1,952Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:
a) ∆ANP ᔕ ∆HBA và ∆MCN ᔕ ∆MPB;
b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a) Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).
Mà \(\widehat {BAC} + \widehat {PAN} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {PAN} = 90^\circ \).
Vì MN vuông góc với BC, AH vuông góc với BC nên MN song song với AH hay MP song song với AH.
Do đó, \(\widehat P = \widehat {HAB}\) (hai góc đồng vị).
Tam giác ANP vuông tại A và tam giác HBA vuông tại H có:
\(\widehat P = \widehat {HAB}\) (cmt)
Do đó, ∆ANP ᔕ ∆HBA (hai góc nhọn bằng nhau).
Tam giác MCN vuông tại M và tam giác MPB vuông tại M có:
\(\widehat C = \widehat P\) (cùng phụ với góc B).
Do đó, ∆MCN ᔕ ∆MPB (hai góc nhọn bằng nhau).
b)
Ta có: \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = \frac{{MB}}{{PB}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{MC}}\).
Tam giác PMB có: PM song song với AH nên theo định lí Thalès ta có:
\(\frac{{MB}}{{MH}} = \frac{{PB}}{{PA}}\) hay \(\frac{{MB}}{{PB}} = \frac{{MH}}{{PA}}\).
Tam giác AHC có: MN song song với AH nên theo định lí Thales ta có:
\(\frac{{NC}}{{NA}} = \frac{{MC}}{{MH}}\).
Do đó, \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = \frac{{MB}}{{PB}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{MC}}\)\( = \frac{{MH}}{{PA}} \cdot \frac{{MC}}{{MH}} \cdot \frac{{PA}}{{MC}} = 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:
a) HA . HD = HB . HE = HC . HF;
b) ∆AFC ᔕ ∆AEB và AF . AB = AE . AC;
c) ∆BDF ᔕ ∆EDC và DA là tia phân giác của góc EDF.
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
a) ∆ABC ᔕ ∆HAC và CA2 = CH . CB.
b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).
Câu 4:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:
a) ∆BDF ᔕ ∆BAC và ∆CDE ᔕ ∆CAB;
b) BF . BA + CE . CA = BC2.
Câu 5:
Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.
a) Chứng minh rằng CM ⊥ DN.
b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.
Câu 6:
về câu hỏi!