Câu hỏi:

11/07/2024 2,276

Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:

a) ∆ANP ∆HBA và ∆MCN ∆MPB;

b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).

Mà \(\widehat {BAC} + \widehat {PAN} = 180^\circ \) (hai góc kề bù)

Do đó, \(\widehat {PAN} = 90^\circ \).

Vì MN vuông góc với BC, AH vuông góc với BC nên MN song song với AH hay MP song song với AH.

Do đó, \(\widehat P = \widehat {HAB}\) (hai góc đồng vị).

Tam giác ANP vuông tại A và tam giác HBA vuông tại H có:

\(\widehat P = \widehat {HAB}\) (cmt)

Do đó, ∆ANP ∆HBA (hai góc nhọn bằng nhau).

Tam giác MCN vuông tại M và tam giác MPB vuông tại M có:

\(\widehat C = \widehat P\) (cùng phụ với góc B).

Do đó, ∆MCN ∆MPB (hai góc nhọn bằng nhau).

b)

Ta có: \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = \frac{{MB}}{{PB}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{MC}}\).

Tam giác PMB có: PM song song với AH nên theo định lí Thalès ta có:

\(\frac{{MB}}{{MH}} = \frac{{PB}}{{PA}}\) hay \(\frac{{MB}}{{PB}} = \frac{{MH}}{{PA}}\).

Tam giác AHC có: MN song song với AH nên theo định lí Thales ta có:

\(\frac{{NC}}{{NA}} = \frac{{MC}}{{MH}}\).

Do đó, \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = \frac{{MB}}{{PB}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{MC}}\)\( = \frac{{MH}}{{PA}} \cdot \frac{{MC}}{{MH}} \cdot \frac{{PA}}{{MC}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) HA . HD = HB . HE = HC . HF;

b) ∆AFC ∆AEB và AF . AB = AE . AC;

c) ∆BDF ∆EDC và DA là tia phân giác của góc EDF.

Xem đáp án » 11/07/2024 41,363

Câu 2:

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

a) ∆ABC ∆HAC và CA2 = CH . CB.

b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).

Xem đáp án » 11/07/2024 10,033

Câu 3:

Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng AB = 6 cm và AC = 8 cm, hãy tính độ dài các đoạn thẳng BC, AH, BH, CH.

Xem đáp án » 11/07/2024 9,911

Câu 4:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) ∆BDF ∆BAC và ∆CDE ∆CAB;

b) BF . BA + CE . CA = BC2.

Xem đáp án » 11/07/2024 4,731

Câu 5:

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Xem đáp án » 11/07/2024 3,688

Câu 6:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:

a) AM . AB = AH2 và AM . AB = AN . AC.

b) ∆AMN ∆ACB.

Xem đáp án » 30/10/2023 1,398

Bình luận


Bình luận