Câu hỏi:

11/07/2024 3,637

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì ABCD là hình vuông nên AB = BC = CD = DA;

\(\widehat {DAB} = \widehat {ABC} = \widehat {BCD} = \widehat {CDA} = 90^\circ \).

Vì M là trung điểm của AB nên AM = MB = \(\frac{1}{2}\)AB.

Vì N là trung điểm của BC nên NB = NC = \(\frac{1}{2}\)BC.

Mà AB = BC nên AM = MB = NB = NC.

Xét tam giác CBM vuông ở B và tam giác DCN vuông ở C có:

MB = NC (cmt)

BC = CD (cmt)

Do đó, tam giác CBM và tam giác DCN bằng nhau (hai cạnh góc vuông).

Suy ra \(\widehat {BMC} = \widehat {DNC}\).

\(\widehat {BMC} + \widehat {MCB} = 90^\circ \) nên \(\widehat {DNC} + \widehat {MCB} = 90^\circ \).

Tam giác CON có:

\(\widehat {ONC} + \widehat {OCN} = 90^\circ \) (do \(\widehat {DNC} + \widehat {MCB} = 90^\circ \)).

Nên \(\widehat {NOC} = 90^\circ \).

Do đó, CM vuông góc với DN tại O.

b) Ta có BC = CD = DA = AB = 4 cm; NC = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)CD = 2 cm hay CD = 2NC.

Áp dụng định lý Pythagore vào tam giác CND vuông tại C ta có:

ND2 = NC2 + CD2 = NC2 + (2NC)2 = 5NC2.

Do đó, \(\frac{{N{C^2}}}{{N{D^2}}} = \frac{1}{5}\). Suy ra \(\frac{{NC}}{{ND}} = \frac{1}{{\sqrt 5 }}\).

Xét tam giác NOC vuông tại O và tam giác CND vuông tại C có:

\(\widehat {ONC}\) chung

Do đó, ∆ONC ∆CND (góc nhọn).

Suy ra \(\frac{{ON}}{{CN}} = \frac{{OC}}{{CD}} = \frac{{NC}}{{ND}} = \frac{1}{{\sqrt 5 }}\). Do đó, OC = \(\frac{1}{{\sqrt 5 }}\)CD; ON = \(\frac{1}{{\sqrt 5 }}\)CN.

Vậy diện tích tam giác ONC là:

\(S = \frac{1}{2}OC \cdot ON = \frac{1}{2}.\frac{1}{{\sqrt 5 }}CD \cdot \frac{1}{{\sqrt 5 }}CN = \frac{1}{{10}} \cdot 4 \cdot 2 = 0,8\) (cm2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) HA . HD = HB . HE = HC . HF;

b) ∆AFC ∆AEB và AF . AB = AE . AC;

c) ∆BDF ∆EDC và DA là tia phân giác của góc EDF.

Xem đáp án » 11/07/2024 39,365

Câu 2:

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

a) ∆ABC ∆HAC và CA2 = CH . CB.

b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).

Xem đáp án » 11/07/2024 9,946

Câu 3:

Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng AB = 6 cm và AC = 8 cm, hãy tính độ dài các đoạn thẳng BC, AH, BH, CH.

Xem đáp án » 11/07/2024 9,729

Câu 4:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) ∆BDF ∆BAC và ∆CDE ∆CAB;

b) BF . BA + CE . CA = BC2.

Xem đáp án » 11/07/2024 4,456

Câu 5:

Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:

a) ∆ANP ∆HBA và ∆MCN ∆MPB;

b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).

Xem đáp án » 11/07/2024 2,254

Câu 6:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:

a) AM . AB = AH2 và AM . AB = AN . AC.

b) ∆AMN ∆ACB.

Xem đáp án » 30/10/2023 1,360

Bình luận


Bình luận