Chọn phương án đúng.
Tổng bình phương các nghiệm của phương trình x2 – 5x + 3 = 0 là
A. 5.
B. 3.
C. 19.
D. 22.
Chọn phương án đúng.
Tổng bình phương các nghiệm của phương trình x2 – 5x + 3 = 0 là
A. 5.
B. 3.
C. 19.
D. 22.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Áp dụng định lí Viète cho phương trình x2 – 5x + 3 = 0, ta được \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 5}\\{{x_1}{x_2} = 3}\end{array}} \right..\)
Tổng bình phương các nghiệm là x12 + x22 = (x1 + x2)2 – 2x1x2 = 52 – 2.3 = 19.
Vậy tổng bình phương các nghiệm là 19.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\Delta = {\left( { - 12} \right)^2} - 4.8 = 112 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có: x1 + x2 = 12; x1x2 = 8.
b) Ta có: \(\Delta = {11^2} - 4.2.\left( { - 5} \right) = 161 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{{11}}{2};\) \({x_1}{x_2} = - \frac{5}{2}.\)
c) Ta có: \(\Delta = - 4.3.\left( { - 10} \right) = 120 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có: x1 + x2 = 0; \({x_1}{x_2} = - \frac{{10}}{3}.\)
d) Ta có: \(\Delta = {\left( { - 1} \right)^2} - 4.3 = 1 - 12 = - 11 < 0\) nên phương trình vô nghiệm.
Lời giải
Nửa chu vi của bể bơi là 74 : 2 = 37 m.
Chiều rộng và chiều dài của bể bơi là hai nghiệm của phương trình bậc hai:
x2 – 37x + 300 = 0.
Ta có: \(\Delta = {\left( { - 37} \right)^2} - 4.300 = 169;\) \(\sqrt \Delta = \sqrt {169} = 13.\)
Suy ra phương trình có hai nghiệm:
\({x_1} = \frac{{37 + 13}}{2} = \frac{{50}}{2} = 25;\) \({x_2} = \frac{{37 - 13}}{2} = \frac{{24}}{2} = 12.\)
Vậy chiều rộng và chiều dài của bể bơi lần lượt là 12 m và 25 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.