Câu hỏi:

19/03/2025 692 Lưu

Để thiết kế một bể cá không nắp có dạng hình hộp chữ nhật có chiều cao là 80 cm, thể tích là 12800 cm3. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70000 VNĐ/m2 và loại kính để làm mặt đáy có giá thành 100000 VNĐ/m2. Gọi x là chiều dài của đáy bể cá với (x > 0, x (m)); f(x) là hàm số xác định chi phí để hoàn thành bể cá. Đồ thị hàm số f(x) có bao nhiêu đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi y là chiều rộng của đáy bể cá (y > 0, m).

Ta có :\[0,8xy = 0,0128 \Rightarrow y = \frac{{0,016}}{x}\left( m \right)\].

Giá thành bể cá được xác định theo hàm số:

\[f\left( x \right) = 2.0,8\left( {x + \frac{{0,016}}{x}} \right).70000 + 100000.x.\frac{{0,016}}{x}\] (VNĐ)

\[ \Rightarrow f\left( x \right) = 112000\left( {x + \frac{{0,016}}{x}} \right) + 1600\](VNĐ)

\[ \Rightarrow f\left( x \right) = 112000x + 1600 + \frac{{1792}}{x}\](VNĐ).

Ta có:\[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {112000x + 1600 + \frac{{1792}}{x}} \right) = + \infty \].

\[\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - (112000x + 1600)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{1792}}{x} = 0\].

Nên đồ thị hàm f(x) có tiệm cận đứng là x = 0; tiệm cận xiên là y = 112000x + 1600.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có \(\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{26t + 10}}{{t + 5}} = 26\). Nên đồ thị hàm số f(t) có đường tiệm cận ngang là y = 26.

Lời giải

Đáp án đúng là: A

Do thể tích của bể là 1 m3 nên 0,5xy = 1 xy = 2 .

Diện tích toàn phần của bể là \(S\left( x \right) = xy + 2.0,5.x + 2.0,5.y = 2 + x + \frac{2}{x},\,\,\,\,\left( {x > 0} \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {S\left( x \right) - \left( {x + 2} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{x} = 0\).

Suy ra đồ thị hàm số S(x) có đường tiệm cận xiên là y = x + 2 a = 1; b = 2.

Vậy P = a2 + b2 = 5.