Cho hàm số \[y = \sqrt {4x - {x^2}} \], tổng số đường tiệm cận đứng và ngang của đồ thị hàm số là
Cho hàm số \[y = \sqrt {4x - {x^2}} \], tổng số đường tiệm cận đứng và ngang của đồ thị hàm số là
Quảng cáo
Trả lời:
Điều kiện: \[0 \le x \le 4\]. Do đó đồ thị hàm số không có tiệm cận ngang.
Đồ thị hàm số cũng không có tiệm cận đứng.
Vậy tổng số đường tiệm cận đứng và ngang của đồ thị hàm số là 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 3}}\] có các đường tiệm cận là \[x = 3,y = 2\].
Do vậy hai đường tiệm cận tạo với hai trục tọa độ hình chữ nhật diện tích bằng \[6\].
Lời giải
Gọi \(M\left( {x;\frac{{2x + 1}}{{x - 1}}} \right) \in \left( C \right)\). Theo đề bài ta có: \(d\left( {M,TCD} \right) = d\left( {M,Ox} \right)\)
\( \Leftrightarrow \left| {x - 1} \right| = \left| {\frac{{2x + 1}}{{x - 1}}} \right|\)điều kiện \(\left( {x \ne 1} \right)\) \( \Leftrightarrow \left| {{{\left( {x - 1} \right)}^2}} \right| = \left| {2x + 1} \right|\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)
Có hai điểm \[{M_1}\left( {0; - 1} \right)\] và \[{M_2}\left( {4;3} \right)\]. Vậy \[{y_1} + {y_2} = - 1 + 3 = 2\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.