Câu hỏi:

05/08/2025 9 Lưu

Tìm số đường tiệm cận của đồ thị hàm số \({\rm{y}} = \frac{{2{\rm{x}} - 1}}{{{{\rm{x}}^2} + 1}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập xác định \({\rm{D}} = \mathbb{R}\).

Đồ thị hàm số không có tiệm cận đứng.

Vì\(\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to  \pm \infty } {\rm{y}} = 0 \Rightarrow \) Tiệm cận ngang của đồ thị hàm số là đường thẳng \({\rm{y}} = 0.\)

Vậy đồ thị hàm số có một đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 3}}\] có các đường tiệm cận là \[x = 3,y = 2\].

Do vậy hai đường tiệm cận tạo với hai trục tọa độ hình chữ nhật diện tích bằng \[6\].

Lời giải

Gọi \(M\left( {x;\frac{{2x + 1}}{{x - 1}}} \right) \in \left( C \right)\). Theo đề bài ta có: \(d\left( {M,TCD} \right) = d\left( {M,Ox} \right)\)

\( \Leftrightarrow \left| {x - 1} \right| = \left| {\frac{{2x + 1}}{{x - 1}}} \right|\)điều kiện \(\left( {x \ne 1} \right)\) \( \Leftrightarrow \left| {{{\left( {x - 1} \right)}^2}} \right| = \left| {2x + 1} \right|\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)

Có hai điểm \[{M_1}\left( {0; - 1} \right)\] và \[{M_2}\left( {4;3} \right)\]. Vậy \[{y_1} + {y_2} =  - 1 + 3 = 2\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP