Câu hỏi:

13/08/2025 7 Lưu

Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh đưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: Nt=1000+100t100+t29(con)trong đó  là thời gian tính bằng giây Tính số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.

Trả lời:  Số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số Nt=1000+100t100+t2(t>0) .

Ta có: N't=100.100+t2-100t.2t100+t22=100.(100-t2)100+t22 .

Khi đó, với t>0,N't=0100-t2=0t2=100t=10 .

Bảng biến thiên của hàm số Nt  như sau:

(Trả lời ngắn) 	Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh đưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: N(t)=1000+100t/(100+t^2 ) (

Căn cứ bảng biến thiên, ta thấy: Trên khoảng 0;+ , hàm số Nt  đạt giá trị lôn nhất bằng 1005 tai t=10.

Vậy số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(v = s' =  - 6{t^2} + 48t + 9\).

Theo đề, ta cần tìm vận tốc lớn nhất trong 10 giây đầu tiên nên bài toán trở thành tìm GTLN của hàm số \(v\left( t \right) =  - 6{t^2} + 48t + 9\) trên đoạn \(\left[ {0\,;\,10} \right]\).

Khi đó \(v'\left( t \right) =  - 12t + 48\), \(v'\left( t \right) = 0 \Leftrightarrow t = 4 \in \left[ {0\,;\,10} \right]\).

Ta có \(v\left( 0 \right) = 9;\,\,v\left( 4 \right) = 105;\,\,v\left( {10} \right) =  - 111\). Suy ra \[{v_{m\,ax}} = 105\] \(\left( {m/s} \right)\).

Vậy vận tốc lớn nhất của vật đạt được trong khoảng 10 giây đầu tiên là 105 \(\left( {m/s} \right)\).

Lời giải

(Trả lời ngắn) Câu 32.	Ông \(A\) dự định sử dụng hết \(6,7{\mkern 1mu} {m^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu? Trả lời:………………………………. (ảnh 1)

Hình hộp chữ nhật không nắp lần lượt có chiều rộng, dài, cao là \[x,y,z\], biết \(y = 2x\)

Diện tích không nắp \(S = xy + 2xz + 2yz = 2{x^2} + 6xz = 6,7{\mkern 1mu} {m^2}\) và thể tích \[V = xyz = 2{x^2}z\]

\(S = 2{x^2} + 3xz + 3xz \ge 3\sqrt[3]{{18{x^4}{z^2}}} = 3\sqrt[3]{{\frac{{9{V^2}}}{2}}} \Leftrightarrow {\left( {\frac{S}{3}} \right)^3} \ge \frac{{9{V^2}}}{2} \Leftrightarrow V \le \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \)

Suy ra: \(\max V = \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}}  \approx 1,57{m^3}\);

khi \(2{x^2} = 3xz \Leftrightarrow z = \frac{2}{3}x\)Û\(S = 2{x^2} + 6x\left( {\frac{2}{3}x} \right) = 6{x^2} = 6,7{m^2}\)Û \(x \approx 1.06\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP