Câu hỏi:

19/08/2025 18 Lưu

Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh đưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: Nt=1000+100t100+t29(con)trong đó  là thời gian tính bằng giây Tính số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.

Trả lời:  Số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số Nt=1000+100t100+t2(t>0) .

Ta có: N't=100.100+t2-100t.2t100+t22=100.(100-t2)100+t22 .

Khi đó, với t>0,N't=0100-t2=0t2=100t=10 .

Bảng biến thiên của hàm số Nt  như sau:

(Trả lời ngắn) 	Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh đưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: N(t)=1000+100t/(100+t^2 ) (

Căn cứ bảng biến thiên, ta thấy: Trên khoảng 0;+ , hàm số Nt  đạt giá trị lôn nhất bằng 1005 tai t=10.

Vậy số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số fx=x2+9x vơi x0;+ .

Ta có: f'x=x2-9x2 . Khi đó, f'x=0x=3  (do x>0  ).

Ngoài ra limx0+xfx=+,limx0+fx=+ .

Bảng biến thiên của hàm số như sau:

(Trả lời ngăn) 	Tìm giá trị lôn nhất và giá trị nhỏ nhất (nếu có) của hàm số f(x)=(x^2+9)/x trên khoảng (0;+∞). Trả lời: min_((0;+∞)) f(x)=6 tại x=3 và hàm số f(x) không có giá trị lớn nhất. (ảnh 1)

Căn cứ bảng biến thiên, ta có: min0;+fx=6  tại x=3  và hàm số  không có giá trị lớn nhất.

Lời giải

a) Xét y=x3-12x+1  trên đoạn [-1;3]

y'=3x2-12=0x=2x=-2(loai)

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 1)

Từ bảng biến thiên, ta thấy max-1;3y=y2=-15  và
b) Xét y=-x3_24x2-180x+400  trên đoạn [3;11]

y'=-3x2+48x-180=0x=10x=6

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 2)

Từ bảng biến thiên, ta thấy max3;11y=y3=49  và min3;11y=y6=-32
c) Xét y=2x+1x-2  trên đoạn [3;7]

y'=-5x-22<0 x3;7

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 3)

Từ bảng biến thiên, ta thấy max3;7y=y3=7  và min3;7y=y7=3
d) Xét y=sin 2x  trên đoạn 0;7π12

y'=2coss 2x=02x=π2+kπx=π4+kπ2k

Ta có: x0;7π12k=0x=π4
Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 4)

Từ bảng biến thiên, ta thấy max0;7π12y=π4=1  và min0;7π12=y7π12=-12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP