Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh đưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: 9(con)trong đó là thời gian tính bằng giây Tính số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.
Trả lời: Số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.
Quảng cáo
Trả lời:
Xét hàm số .
Ta có: .
Khi đó, với .
Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta thấy: Trên khoảng , hàm số đạt giá trị lôn nhất bằng 1005 tai .
Vậy số lượng vi khuẩn lôn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưởng là 1005 con.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét trên đoạn [-1;3]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid5-1755064187.png)
Từ bảng biến thiên, ta thấy và
b) Xét trên đoạn [3;11]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid6-1755064268.png)
Từ bảng biến thiên, ta thấy và
c) Xét trên đoạn [3;7]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid7-1755064499.png)
Từ bảng biến thiên, ta thấy và
d) Xét trên đoạn
Ta có:
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 4)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid8-1755064723.png)
Từ bảng biến thiên, ta thấy và
Lời giải

Gọi \(H,\,K\) là hình chiếu của \(A\) trên bờ dọc và bờ ngang. Đặt \(BH = x\left( {x > 0} \right)\).
Khi đó, \(\frac{{BH}}{{HD}} = \frac{{BA}}{{AC}} = \frac{{DK}}{{KC}} \Rightarrow KC = \frac{{HD.\,DK}}{{BH}} = \frac{{60}}{x}\).
Diện tích khu nuôi cá là:
\(S = \frac{1}{2}BD.\,DC = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = 6x + \frac{{150}}{x} + 60 \ge 2\sqrt {6x.\frac{{150}}{x}} + 60\)
\( \Rightarrow S \ge 120,\,S = 120\,\,khi\,\,x = 5\). Vậy diện tích nhỏ nhất có thể giăng là \(120{m^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
