Câu hỏi:

19/08/2025 19 Lưu

Tam giác vuông có cạnh huyền bằng 5 cm  có thể có diện tích lớn nhất bằng bao nhiêu?

Trả lời:  diện tích lớn nhất của tam giác là 52

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt một cạnh góc vuông là xx>0  thì cạnh còn lại là 5-x2
Diện tích tam giác vuông là: fx=x5-x2
Tập xác định: D=0;5

f'x=5-x2-x25-x2

Tập xác định mới: D1=0;5

f'x=0x=102x=-102(loai)

Bảng biến thiên:

(Trả lời ngắn) 	Tam giác vuông có cạnh huyền bằng 5

Từ bảng biến thiên, ta thấy  maxDfx=f102=52

Vậy diện tích lớn nhất của tam giác là 52

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số fx=x2+9x vơi x0;+ .

Ta có: f'x=x2-9x2 . Khi đó, f'x=0x=3  (do x>0  ).

Ngoài ra limx0+xfx=+,limx0+fx=+ .

Bảng biến thiên của hàm số như sau:

(Trả lời ngăn) 	Tìm giá trị lôn nhất và giá trị nhỏ nhất (nếu có) của hàm số f(x)=(x^2+9)/x trên khoảng (0;+∞). Trả lời: min_((0;+∞)) f(x)=6 tại x=3 và hàm số f(x) không có giá trị lớn nhất. (ảnh 1)

Căn cứ bảng biến thiên, ta có: min0;+fx=6  tại x=3  và hàm số  không có giá trị lớn nhất.

Lời giải

a) Xét y=x3-12x+1  trên đoạn [-1;3]

y'=3x2-12=0x=2x=-2(loai)

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 1)

Từ bảng biến thiên, ta thấy max-1;3y=y2=-15  và
b) Xét y=-x3_24x2-180x+400  trên đoạn [3;11]

y'=-3x2+48x-180=0x=10x=6

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 2)

Từ bảng biến thiên, ta thấy max3;11y=y3=49  và min3;11y=y6=-32
c) Xét y=2x+1x-2  trên đoạn [3;7]

y'=-5x-22<0 x3;7

 

Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 3)

Từ bảng biến thiên, ta thấy max3;7y=y3=7  và min3;7y=y7=3
d) Xét y=sin 2x  trên đoạn 0;7π12

y'=2coss 2x=02x=π2+kπx=π4+kπ2k

Ta có: x0;7π12k=0x=π4
Bảng biến thiên:

(Trả lời ngắn) 	Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin⁡2x trên đoạn [0;7π/12] Trả lời:    a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b)  max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12]  y=y(π/4)=1 và min_[0;7π/12]  y=y(7π/12)=-1/2 (ảnh 4)

Từ bảng biến thiên, ta thấy max0;7π12y=π4=1  và min0;7π12=y7π12=-12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP