Câu hỏi:

13/08/2025 11 Lưu

Một chất điểm chuyển động theo phương trình \(S =  - {t^3} + 9{t^2} + t + 10\) trong đó \(t\) tính bằng \(\left( s \right)\) và \(S\) tính bằng \(\left( m \right)\). Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là

Trả lời: \(t = 3s\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(v = S' =  - 3{t^2} + 18t + 1 =  - 3{\left( {t - 3} \right)^2} + 28 \le 28\), \(\forall t > 0\).

Dấu “\( = \)” xảy ra khi \(t = 3\).

Vậy vận tốc của chất điểm đạt giá trị lớn nhất bằng \(28\) khi \(t = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(Trả lời ngắn) Câu 32.	Ông \(A\) dự định sử dụng hết \(6,7{\mkern 1mu} {m^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu? Trả lời:………………………………. (ảnh 1)

Hình hộp chữ nhật không nắp lần lượt có chiều rộng, dài, cao là \[x,y,z\], biết \(y = 2x\)

Diện tích không nắp \(S = xy + 2xz + 2yz = 2{x^2} + 6xz = 6,7{\mkern 1mu} {m^2}\) và thể tích \[V = xyz = 2{x^2}z\]

\(S = 2{x^2} + 3xz + 3xz \ge 3\sqrt[3]{{18{x^4}{z^2}}} = 3\sqrt[3]{{\frac{{9{V^2}}}{2}}} \Leftrightarrow {\left( {\frac{S}{3}} \right)^3} \ge \frac{{9{V^2}}}{2} \Leftrightarrow V \le \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \)

Suy ra: \(\max V = \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}}  \approx 1,57{m^3}\);

khi \(2{x^2} = 3xz \Leftrightarrow z = \frac{2}{3}x\)Û\(S = 2{x^2} + 6x\left( {\frac{2}{3}x} \right) = 6{x^2} = 6,7{m^2}\)Û \(x \approx 1.06\).

Lời giải

Ta có \(v = s' =  - 6{t^2} + 48t + 9\).

Theo đề, ta cần tìm vận tốc lớn nhất trong 10 giây đầu tiên nên bài toán trở thành tìm GTLN của hàm số \(v\left( t \right) =  - 6{t^2} + 48t + 9\) trên đoạn \(\left[ {0\,;\,10} \right]\).

Khi đó \(v'\left( t \right) =  - 12t + 48\), \(v'\left( t \right) = 0 \Leftrightarrow t = 4 \in \left[ {0\,;\,10} \right]\).

Ta có \(v\left( 0 \right) = 9;\,\,v\left( 4 \right) = 105;\,\,v\left( {10} \right) =  - 111\). Suy ra \[{v_{m\,ax}} = 105\] \(\left( {m/s} \right)\).

Vậy vận tốc lớn nhất của vật đạt được trong khoảng 10 giây đầu tiên là 105 \(\left( {m/s} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP