Ông \(A\) dự định sử dụng hết \(6,7{\mkern 1mu} {m^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu?
Trả lời:……………………………….
Ông \(A\) dự định sử dụng hết \(6,7{\mkern 1mu} {m^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu?
Trả lời:……………………………….Quảng cáo
Trả lời:

Hình hộp chữ nhật không nắp lần lượt có chiều rộng, dài, cao là \[x,y,z\], biết \(y = 2x\)
Diện tích không nắp \(S = xy + 2xz + 2yz = 2{x^2} + 6xz = 6,7{\mkern 1mu} {m^2}\) và thể tích \[V = xyz = 2{x^2}z\]
\(S = 2{x^2} + 3xz + 3xz \ge 3\sqrt[3]{{18{x^4}{z^2}}} = 3\sqrt[3]{{\frac{{9{V^2}}}{2}}} \Leftrightarrow {\left( {\frac{S}{3}} \right)^3} \ge \frac{{9{V^2}}}{2} \Leftrightarrow V \le \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \)
Suy ra: \(\max V = \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \approx 1,57{m^3}\);
khi \(2{x^2} = 3xz \Leftrightarrow z = \frac{2}{3}x\)Û\(S = 2{x^2} + 6x\left( {\frac{2}{3}x} \right) = 6{x^2} = 6,7{m^2}\)Û \(x \approx 1.06\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(v = s' = - 6{t^2} + 48t + 9\).
Theo đề, ta cần tìm vận tốc lớn nhất trong 10 giây đầu tiên nên bài toán trở thành tìm GTLN của hàm số \(v\left( t \right) = - 6{t^2} + 48t + 9\) trên đoạn \(\left[ {0\,;\,10} \right]\).
Khi đó \(v'\left( t \right) = - 12t + 48\), \(v'\left( t \right) = 0 \Leftrightarrow t = 4 \in \left[ {0\,;\,10} \right]\).
Ta có \(v\left( 0 \right) = 9;\,\,v\left( 4 \right) = 105;\,\,v\left( {10} \right) = - 111\). Suy ra \[{v_{m\,ax}} = 105\] \(\left( {m/s} \right)\).
Vậy vận tốc lớn nhất của vật đạt được trong khoảng 10 giây đầu tiên là 105 \(\left( {m/s} \right)\).
Lời giải
a) Xét trên đoạn [-1;3]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid5-1755064187.png)
Từ bảng biến thiên, ta thấy và
b) Xét trên đoạn [3;11]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid6-1755064268.png)
Từ bảng biến thiên, ta thấy và
c) Xét trên đoạn [3;7]
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid7-1755064499.png)
Từ bảng biến thiên, ta thấy và
d) Xét trên đoạn
Ta có:
Bảng biến thiên:
![(Trả lời ngắn) Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) y=x^3-12x+1 trên đoạn [-1;3] b) y=-x^3+24x^2-180x+400 trên đoạn [3;11] c) y=(2x+1)/(x-2) trên đoạn [3;7] d) y=sin2x trên đoạn [0;7π/12] Trả lời: a) max_([-1;3]) y=y(-1)=12 và min_([-1;3]) y=y(2)=-15 b) max_([3;11]) y=y(3)=49 và min_([3;11]) y=y(6)=-32 c) max_([3;7]) y=y(3)=7 và min_([3;7]) y=y(7)=3 d) max_[0;7π/12] y=y(π/4)=1 và min_[0;7π/12] y=y(7π/12)=-1/2 (ảnh 4)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid8-1755064723.png)
Từ bảng biến thiên, ta thấy và
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.