Câu hỏi:

30/09/2025 7 Lưu

Cho hàm số \(y = f\left( x \right)\) có đồ thị trong hình bên. Mệnh đề nào dưới đây đúng?
Mệnh đề nào dưới đây đúng? (ảnh 1)

A. Hàm số có giá trị cực tiểu bằng \(2\).    
B. Hàm số có ba điểm cực trị.
C. Hàm số có giá trị cực đại bằng \(0\).     
D. Hàm số đạt cực đại tại \(x = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số ta thấy:

Hàm số có giá trị cực tiểu bằng \( - 2\). Suy ra đáp án A sai.

Hàm số có hai điểm cực trị. Suy ra đáp án B sai.

Hàm số có giá trị cực đại bằng \(2\). Suy ra đáp án C sai.

Hàm số có đạt cực đại tại \(x = 0\). Suy ra đáp án D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(4.\)

Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].

Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\\\end{array}\] 

Bảng biến thiên

Gọi \[m\] là giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\]. Giá trị của \[m\] bằng bao nhiêu? (ảnh 1)

Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).

Lời giải

Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):

\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) =  - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]

Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].

\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.

\(\left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).

Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).

Vậy có \(10\) giá trị.

Câu 4

A. \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).      
B. \(y = \frac{{{x^2} + 2x - 2}}{{x + 1}}\).                 
C. \(y = \frac{{{x^2} + 2x + 2}}{{x - 1}}\).                 
D. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP