Cho hàm số \(y = f\left( x \right)\) có đồ thị trong hình bên. Mệnh đề nào dưới đây đúng?


Quảng cáo
Trả lời:

Dựa vào đồ thị hàm số ta thấy:
Hàm số có giá trị cực tiểu bằng \( - 2\). Suy ra đáp án A sai.
Hàm số có hai điểm cực trị. Suy ra đáp án B sai.
Hàm số có giá trị cực đại bằng \(2\). Suy ra đáp án C sai.
Hàm số có đạt cực đại tại \(x = 0\). Suy ra đáp án D đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(4.\)
Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].
Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\\\end{array}\]
Bảng biến thiên
Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).
Lời giải
Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):
\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) = - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]
Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].
\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.
\(\left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).
Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).
Vậy có \(10\) giá trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.