PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\,\left( {a \ne 0} \right)\) có đồ thị trong hình dưới đây.

Xét tính đúng, sai của các mệnh đề sau
a) Hệ số \(a > 0\).
b) Hàm số đạt cực đại tại \(x = 0\).
c) Phương trình \(3f\left( x \right) - 5 = 0\) có 3 nghiệm phân biệt.
d) \(f\left( x \right) = {x^3} - 3{x^2} - 2\).
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\,\left( {a \ne 0} \right)\) có đồ thị trong hình dưới đây.

Xét tính đúng, sai của các mệnh đề sau
a) Hệ số \(a > 0\).
b) Hàm số đạt cực đại tại \(x = 0\).
c) Phương trình \(3f\left( x \right) - 5 = 0\) có 3 nghiệm phân biệt.
d) \(f\left( x \right) = {x^3} - 3{x^2} - 2\).
Quảng cáo
Trả lời:
|
Câu 1 |
Giải chi tiết( giải thích) |
|
a) Đ |
Từ đồ thị suy ra \(a > 0\) |
|
b) s |
Từ đồ thị ta có hàm số đạt cực đại tại \(x = - 2\) |
|
c) Đ |
Ta có \(3f\left( x \right) - 5 = 0 \Leftrightarrow f\left( x \right) = \frac{5}{3}\) Từ đồ thị ta có đường thẳng \(y = \frac{5}{3}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt nên PT \(3f\left( x \right) - 5 = 0\) có 3 nghiệm phân biệt. |
|
d) s |
Từ đồ thị ta có: Đồ thị giao với \(Oy\)tại điểm có tung độ \( - 2 \Rightarrow d = - 2\) Đồ thị hàm số \(y = f\left( x \right)\) đi qua các điểm \(\left( { - 2;\,\,2} \right),\,\,\left( { - 1;\,\,0} \right),\,\,\left( {1;\,\,2} \right)\) nên ta có hệ \(\left\{ \begin{array}{l} - 8a + 4a - 2c - 2 = 2\\ - a + b - c - 2 = 0\\a + b + c - 2 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 3\\c = 0\end{array} \right.\,\, \Rightarrow f\left( x \right) = {x^3} + 3{x^2} - 2\) |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 1005
Xét hàm số \[N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}},\,\left( {t > 0} \right)\]
\[N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 2t.100t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100\left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\]
\[N'\left( t \right) = 0 \Leftrightarrow 100 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10\,\,\left( N \right)\\t = - 10\,\left( L \right)\end{array} \right.\].
Ta có bảng biến thiên

Vậy số lượng vi khuẩn lớn nhất nuôi cấy được là 1005 con.
Câu 2
Lời giải
Dựa vào bảng biến thiên ta thấy đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\). Suy ra loại B và D.
Ta thấy đồ thị hàm số đi qua điểm \(\left( {0;2} \right)\) nên loại C.
Vậy bảng biến thiên đề bài cho là của hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

