Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Khi đó
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Hàm số \(f\left( x \right)\) nghịch biến trên từng khoảng xác định của nó.
c) Đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Số điểm trên \(\left( C \right)\) có tọa độ nguyên là \(3\).
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Khi đó
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Hàm số \(f\left( x \right)\) nghịch biến trên từng khoảng xác định của nó.
c) Đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Số điểm trên \(\left( C \right)\) có tọa độ nguyên là \(3\).
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Đúng.
Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\).
Vậy tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Sai.
Ta có: \(f'\left( x \right) = \frac{{{x^2} + 2x + 2}}{{{{\left( {x + 1} \right)}^2}}} > 0,\,\forall x \in D\).
Vậy hàm số \(f\left( x \right)\) luôn đồng biến trên từng khoảng xác định của nó.
c) Đúng.
Ta có: \(f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}} = x + 2 - \frac{1}{{x + 1}}\)
Và: \[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1}}{{x + 1}} = 0\]
Suy ra: đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Sai.
Ta có: \(f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}} = x + 2 - \frac{1}{{x + 1}}\)
Ta thấy: với \(x \in \mathbb{Z}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi 1 chia hết cho \(\left( {x + 1} \right)\)
\( \Rightarrow \left[ \begin{array}{l}x + 1 = 1\\x + 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 1\,\left( n \right)\\x = - 2 \Rightarrow y = 1\,\left( n \right)\end{array} \right.\)
Vậy có \(2\) điểm trên \(\left( C \right)\) có tọa độ nguyên là \(\left( {0\,;\,1} \right)\) và \(\left( { - 2\,;\,1} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(4.\)
Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].
Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\\\end{array}\]
Bảng biến thiên
Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).
Lời giải
Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):
\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) = - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]
Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].
\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.
\(\left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).
Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).
Vậy có \(10\) giá trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.