Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Khi đó
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Hàm số \(f\left( x \right)\) nghịch biến trên từng khoảng xác định của nó.
c) Đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Số điểm trên \(\left( C \right)\) có tọa độ nguyên là \(3\).
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Khi đó
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Hàm số \(f\left( x \right)\) nghịch biến trên từng khoảng xác định của nó.
c) Đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Số điểm trên \(\left( C \right)\) có tọa độ nguyên là \(3\).
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Đúng.
Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\).
Vậy tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Sai.
Ta có: \(f'\left( x \right) = \frac{{{x^2} + 2x + 2}}{{{{\left( {x + 1} \right)}^2}}} > 0,\,\forall x \in D\).
Vậy hàm số \(f\left( x \right)\) luôn đồng biến trên từng khoảng xác định của nó.
c) Đúng.
Ta có: \(f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}} = x + 2 - \frac{1}{{x + 1}}\)
Và: \[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1}}{{x + 1}} = 0\]
Suy ra: đường thẳng \(y = x + 2\) là đường tiệm cận xiên của \(\left( C \right)\).
d) Sai.
Ta có: \(f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}} = x + 2 - \frac{1}{{x + 1}}\)
Ta thấy: với \(x \in \mathbb{Z}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi 1 chia hết cho \(\left( {x + 1} \right)\)
\( \Rightarrow \left[ \begin{array}{l}x + 1 = 1\\x + 1 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 1\,\left( n \right)\\x = - 2 \Rightarrow y = 1\,\left( n \right)\end{array} \right.\)
Vậy có \(2\) điểm trên \(\left( C \right)\) có tọa độ nguyên là \(\left( {0\,;\,1} \right)\) và \(\left( { - 2\,;\,1} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 1005
Xét hàm số \[N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}},\,\left( {t > 0} \right)\]
\[N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 2t.100t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100\left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\]
\[N'\left( t \right) = 0 \Leftrightarrow 100 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10\,\,\left( N \right)\\t = - 10\,\left( L \right)\end{array} \right.\].
Ta có bảng biến thiên

Vậy số lượng vi khuẩn lớn nhất nuôi cấy được là 1005 con.
Câu 2
Lời giải
Dựa vào bảng biến thiên ta thấy đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\). Suy ra loại B và D.
Ta thấy đồ thị hàm số đi qua điểm \(\left( {0;2} \right)\) nên loại C.
Vậy bảng biến thiên đề bài cho là của hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

