Câu hỏi:

30/09/2025 16 Lưu

Có bao nhiêu giá trị nguyên \(m\) thuộc đoạn \(\left[ { - 5;5} \right]\), để đường thẳng \(d:y = mx + 1\) cắt đồ thị hàm số \(\left( C \right):y = \frac{{ - 2x + 1}}{{x - 1}}\) tại hai điểm phân biệt?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):

\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) =  - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]

Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].

\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.

\(\left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).

Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).

Vậy có \(10\) giá trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(4.\)

Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].

Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\\\end{array}\] 

Bảng biến thiên

Gọi \[m\] là giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\]. Giá trị của \[m\] bằng bao nhiêu? (ảnh 1)

Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).

Lời giải

Ta có:

\[\begin{array}{l}y =  - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\\y' =  - 3{x^2} - 2mx + \left( {4m + 9} \right)\end{array}\]

Hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right)\) khi \(y' \le 0,\forall x \in \left( { - \infty ; + \infty } \right)\).

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}a =  - 1 < 0\\\Delta ' = {m^2} + 12m + 27 \le 0\end{array} \right.\\ \Leftrightarrow  - 9 \le m \le  - 3\end{array}\).

Vì \(m\) nguyên nên \(m \in \left\{ { - 9; - 8; - 7; - 6; - 5; - 4; - 3} \right\}\).

Vậy có \(7\) giá trị.

Câu 3

A. \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).      
B. \(y = \frac{{{x^2} + 2x - 2}}{{x + 1}}\).                 
C. \(y = \frac{{{x^2} + 2x + 2}}{{x - 1}}\).                 
D. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP