Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đậy?

Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đậy?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A.
Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B, D.
Đồ thị hàm số đi qua điểm \(\left( {2; - 3} \right)\). Chọn đáp án C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: \(9\).
Ta có \[f\left( t \right) = - {t^3} + 45{t^2} + 600t \Rightarrow f'\left( t \right) = - 3{t^2} + 90t + 600\].
Tốc độ truyền bệnh lớn hơn 1200 nên \[f'\left( t \right) > 1200 \Leftrightarrow - 3{t^2} + 90t + 600 > 1200 \Leftrightarrow - 3{t^2} + 90t - 600 > 0 \Leftrightarrow 10 < t < 20\].
Vậy có 9 ngày tốc độ truyền bệnh lớn hơn 1200.
Lời giải
Lời giải
Đồ thị có tiệm cận đứng \(x = - 2\).
Suy ra \( - \frac{2}{c} = - 2 \Leftrightarrow c = 1\).
Đồ thị có tiệm cận xiên đi qua hai điểm: \(\left( {0;1} \right)\) và \(\left( { - 1;0} \right)\) nên có phương trình: \(\frac{x}{{ - 1}} + \frac{y}{1} = 1 \Leftrightarrow y = x + 1\).
Khi đó ta có:
\[\mathop {\lim }\limits_{x \to + \infty } \frac{{a{x^2} + bx + 1}}{{x\left( {x + 2} \right)}} = 1 \Leftrightarrow a = 1\]; \[\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + bx + 1}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {b - 2} \right)x + 1}}{{x + 2}} = b - 2 = 1 \Leftrightarrow b = 3\].
Vậy: \(T = 2a + 3b - c = 2 + 9 - 1 = 10\). Chọn đáp án B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.