Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị là đường cong trong hình vẽ sau.
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị là đường cong trong hình vẽ sau. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/6-1759228731.png)
Điểm cực tiểu của đồ thị hàm số \(y = f\left( x \right)\) là
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị là đường cong trong hình vẽ sau. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/6-1759228731.png)
Điểm cực tiểu của đồ thị hàm số \(y = f\left( x \right)\) là
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C
Dựa vào đồ thi hàm số ta thấy điểm cực tiểu của đồ thị hàm số \(y = f\left( x \right)\) là \[M\left( {1\,;\, - 2} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đồ thị có tiệm cận đứng \(x = - 2\).
Suy ra \( - \frac{2}{c} = - 2 \Leftrightarrow c = 1\).
Đồ thị có tiệm cận xiên đi qua hai điểm: \(\left( {0;1} \right)\) và \(\left( { - 1;0} \right)\) nên có phương trình: \(\frac{x}{{ - 1}} + \frac{y}{1} = 1 \Leftrightarrow y = x + 1\).
Khi đó ta có:
\[\mathop {\lim }\limits_{x \to + \infty } \frac{{a{x^2} + bx + 1}}{{x\left( {x + 2} \right)}} = 1 \Leftrightarrow a = 1\]; \[\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + bx + 1}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {b - 2} \right)x + 1}}{{x + 2}} = b - 2 = 1 \Leftrightarrow b = 3\].
Vậy: \(T = 2a + 3b - c = 2 + 9 - 1 = 10\). Chọn đáp án B.
Lời giải
Đáp số: \(9\).
Ta có \[f\left( t \right) = - {t^3} + 45{t^2} + 600t \Rightarrow f'\left( t \right) = - 3{t^2} + 90t + 600\].
Tốc độ truyền bệnh lớn hơn 1200 nên \[f'\left( t \right) > 1200 \Leftrightarrow - 3{t^2} + 90t + 600 > 1200 \Leftrightarrow - 3{t^2} + 90t - 600 > 0 \Leftrightarrow 10 < t < 20\].
Vậy có 9 ngày tốc độ truyền bệnh lớn hơn 1200.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \[y = \frac{{a{x^2} + bx + 1}}{{cx + 2}}\] có đồ thị như hình vẽ bên dưới. Tính giá trị biểu thức: \(T = 2a + 3b - c\). A. 9. B. 10. C. 8. D. 11. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/4-1759228607.png)

![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Trong các hệ số \(a\), \(b\), \(c\) có bao nhiêu số dương? A. 0. B. 2. C. 1. D. 3. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1759228513.png)