Câu hỏi:

30/09/2025 28 Lưu

Đồ thị hàm số \[y = \frac{{1 + 2x}}{{x - 1}}\]có đường tiệm cận ngang là

A. \(x = 1\).               
B. \(y = 1\).              
C. \(x = 2\).                             
D.\(y = 2\)              

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D.

Ta có \(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 + 2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2x + 1}}{{x - 1}} = 2\).

Nên \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: \(9\).

Ta có \[f\left( t \right) =  - {t^3} + 45{t^2} + 600t \Rightarrow f'\left( t \right) =  - 3{t^2} + 90t + 600\].

Tốc độ truyền bệnh lớn hơn 1200 nên \[f'\left( t \right) > 1200 \Leftrightarrow  - 3{t^2} + 90t + 600 > 1200 \Leftrightarrow  - 3{t^2} + 90t - 600 > 0 \Leftrightarrow 10 < t < 20\].

Vậy có 9 ngày tốc độ truyền bệnh lớn hơn 1200.

Câu 2

A. 9.                           
B. 10.                       
C. 8.                               
D. 11.

Lời giải

Lời giải

Đồ thị có tiệm cận đứng \(x =  - 2\).

Suy ra \( - \frac{2}{c} =  - 2 \Leftrightarrow c = 1\).

Đồ thị có tiệm cận xiên đi qua hai điểm: \(\left( {0;1} \right)\) và \(\left( { - 1;0} \right)\) nên có phương trình: \(\frac{x}{{ - 1}} + \frac{y}{1} = 1 \Leftrightarrow y = x + 1\).

Khi đó ta có:

\[\mathop {\lim }\limits_{x \to  + \infty } \frac{{a{x^2} + bx + 1}}{{x\left( {x + 2} \right)}} = 1 \Leftrightarrow a = 1\]; \[\mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{{x^2} + bx + 1}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\left( {b - 2} \right)x + 1}}{{x + 2}} = b - 2 = 1 \Leftrightarrow b = 3\].

Vậy: \(T = 2a + 3b - c = 2 + 9 - 1 = 10\). Chọn đáp án B.

Câu 3

A. 3.                           
B. 4.                         
C. 2.                               
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP