Một chất điểm chuyển động theo phương trình \(s\left( t \right) = {t^3} - 3{t^2} + 8t + 1\), trong đó \(t\) tính bằng giây và \(s\left( t \right)\) tính bằng mét.
a) Vận tốc của chất điểm tại thời điểm \(t = 3\left( {\rm{s}} \right)\) bằng \(8{\rm{\;m}}/{\rm{s}}\).
b) Tại thời điểm mà chất điểm di chuyển được 13 m, vận tốc khi đó bằng \(8{\rm{\;m}}/{\rm{s}}\).
c) Vận tốc nhỏ nhất của chất điểm là \(5{\rm{\;m}}/{\rm{s}}\).
d) Gia tốc tại thời điểm chất điểm đạt vận tốc nhỏ nhất bằng \(2{\rm{\;m}}/{{\rm{s}}^2}\).
Một chất điểm chuyển động theo phương trình \(s\left( t \right) = {t^3} - 3{t^2} + 8t + 1\), trong đó \(t\) tính bằng giây và \(s\left( t \right)\) tính bằng mét.
a) Vận tốc của chất điểm tại thời điểm \(t = 3\left( {\rm{s}} \right)\) bằng \(8{\rm{\;m}}/{\rm{s}}\).
b) Tại thời điểm mà chất điểm di chuyển được 13 m, vận tốc khi đó bằng \(8{\rm{\;m}}/{\rm{s}}\).
c) Vận tốc nhỏ nhất của chất điểm là \(5{\rm{\;m}}/{\rm{s}}\).
d) Gia tốc tại thời điểm chất điểm đạt vận tốc nhỏ nhất bằng \(2{\rm{\;m}}/{{\rm{s}}^2}\).
Quảng cáo
Trả lời:

a) Sai. Ta có: \(v\left( t \right) = s'\left( t \right) = 3{t^2} - 6t + 8\).
\(v\left( 3 \right) = {3.3^2} - 6.3 + 8 = 17\left( {{\rm{m/s}}} \right)\).
b) Đúng. Ta có: \(s\left( t \right) = {t^3} - 3{t^2} + 8t + 1 = 13\)\( \Leftrightarrow {t^3} - 3{t^2} + 8t - 12 = 0 \Leftrightarrow t = 2\).
Khi \(t = 2\), vận tốc của chất điểm là \(v\left( 2 \right) = {3.2^2} - 6.2 + 8 = 8\left( {{\rm{m/s}}} \right)\).
c) Đúng. Xét \(v\left( t \right) = 3{t^2} - 6t + 8,t \ge 0\)
\( \Rightarrow v'\left( t \right) = 6t - 6 \Rightarrow v'\left( t \right) = 0 \Leftrightarrow t = 1\).
Bảng biến thiên:
Từ bảng biến thiên ta thấy giá trị nhỏ nhất của \(v\left( t \right)\) là \(5\left( {{\rm{m}}/{\rm{s}}} \right)\) đạt tại \(t = 1\).
d) Sai. Ta có: \(a\left( t \right) = v'\left( t \right) = 6t - 6\).
Vận tốc nhỏ nhất của chất điểm đạt tại \(t = 1\).
Khi đó gia tốc là \(a\left( 1 \right) = 0\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).
b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).
c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:
\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).
d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).
Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).
Bảng biến thiên:
Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.