Câu hỏi:

02/10/2025 36 Lưu

Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) nước tinh khiết thì phải chi phí các khoản sau: 5 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0005{x^2}\)chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200\,{{\rm{m}}^{\rm{3}}}\). Gọi \(C\left( x \right)\) là chi phí sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\) là chi phí trung bình mỗi mét khối sản phẩm.

a) \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\).

b) Chi phí sản xuất \(100\,{{\rm{m}}^{\rm{3}}}\) nước tinh khiết là 20 triệu đồng.

c) \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\).

d) Chi phí trung bình giảm xuống khi sản lượng nước tính khiết trong ngày không vượt quá 100 \({{\rm{m}}^3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).

b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).

c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:

\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).

d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).

Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).

Bảng biến thiên:

Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm (ảnh 1)

Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

Ta có \(f'\left( t \right) = 500\left( {2t - m{e^{ - t}}} \right)\) và \[f''\left( t \right) = 500\left( {2 + m{e^{ - t}}} \right)\].

Tốc độ bán hàng luôn tăng trong khoảng thời gian 10 năm đầu phát hành sản phẩm \( \Leftrightarrow f'\left( t \right)\) là hàm số đồng biến trên \(\left[ {0\,;\,10} \right]\) \( \Leftrightarrow f''\left( t \right) \ge 0\), \(\forall t \in \left[ {0\,;\,10} \right]\)\( \Leftrightarrow \)\[500\left( {2 + m{e^{ - t}}} \right) \ge 0\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]

\( \Leftrightarrow \)\[2 + m{e^{ - t}} \ge 0\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]\( \Leftrightarrow \)\[m{e^{ - t}} \ge  - 2\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\]\( \Leftrightarrow m \ge  - 2{e^t}\,,\,\,\forall t \in \left[ {0\,;\,10} \right]\)

\( \Leftrightarrow m \ge  - 2{e^0} =  - 2\) (do hàm số \(y =  - 2{e^t}\) nghịch biến trên \(\left[ {0\,;\,10} \right]\)).

Vậy giá trị nhỏ nhất của \(m\) là \( - 2\).

Đáp án: −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP