Câu hỏi:

02/10/2025 23 Lưu

Hai thành phố \(A\)\(B\) cách nhau một con sông. Người ta xây dựng một cây cầu \(EF\) bắc qua sông biết rằng thành phố \(A\) cách con sông một khoảng là \(4\)km và thành phố \(B\) cách con sông một khoảng là \(6\)km (hình vẽ), biết \(HE + KF = 20\)km và độ dài \(EF\) không đổi. Hỏi xây cây cầu cách thành phố \(A\) là bao nhiêu kilomet để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường \(AEFB\))? (kết quả làm tròn đến phần chục)
Hai thành phố \(A\) và \(B\) cách nhau một con sông. Người ta xây dựng một cây cầu \(EF\) bắc qua sông biết rằng thành phố \(A\) cách con sông một khoảng là \(4\)km và thành phố \(B\) cách con sông một khoảng là \(6\)km (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \[HE = {x_{}}{,_{}}FK = y\], với \[x,\,y > 0\].

Ta có: \[HE + KF = 20 \Rightarrow x + y = 20\], \[\left\{ \begin{array}{l}AE = \sqrt {16 + {x^2}} \\BF = \sqrt {36 + {y^2}}  = \sqrt {36 + {{\left( {20 - x} \right)}^2}} \end{array} \right.\].

Nhận xét: Vì \[EF\] không đổi nên \[AB\] ngắn nhất khi \[AE + BF\] nhỏ nhất.

Ta có \[AE + BF\]\[ = \sqrt {{x^2} + 16}  + \sqrt {{{\left( {20 - x} \right)}^2} + 36}  = \sqrt {{x^2} + 16}  + \sqrt {{x^2} - 40x + 436}  = f\left( x \right)\].

Đạo hàm \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + 16} }} + \frac{{x - 20}}{{\sqrt {{x^2} - 40x + 436} }} = 0 \Rightarrow x = 8,\,\forall x \in \left( {0;20} \right)\].

Bảng biến thiên

Hai thành phố \(A\) và \(B\) cách nhau một con sông. Người ta xây dựng một cây cầu \(EF\) bắc qua sông biết rằng thành phố \(A\) cách con sông một khoảng là \(4\)km và thành phố \(B\) cách con sông một khoảng là \(6\)km (ảnh 2)

Vậy \(AE = \sqrt {{8^2} + 16}  \approx 8,94\)km.

Đáp án: 8,94.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).

b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).

c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:

\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).

d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).

Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).

Bảng biến thiên:

Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm (ảnh 1)

Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP