Một tấm kẽm hình vuông ABCD có cạnh bằng \(30\;{\rm{cm}}\). Người ta gập tấm kẽm theo hai cạnh \[EF\] và \(GH\) cho đến khi \(AD\) và \(BC\) trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy.
![Một tấm kẽm hình vuông ABCD có cạnh bằng \(30\;{\rm{cm}}\). Người ta gập tấm kẽm theo hai cạnh \[EF\] và \(GH\) cho đến khi \(AD\) và \(BC\) trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/28-1759414889.png)
a) Thể tích khối trụ được tính bằng công thức \(V = 30S\) trong đó \(S\) là diện tích của tam giác \(AEG\).
b) Diện tích của tam giác \(AEG\) bằng: \(\sqrt {30} .\sqrt {{{\left( {15 - x} \right)}^2}\left( {2x - 15} \right)} \).
c) Giá trị của \(x\) để thể tích khối lăng trụ lớn nhất là \(x = 10\left( {{\rm{cm}}} \right)\).
d) Thể tích khối lăng trụ lớn nhất bằng \(1250\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Một tấm kẽm hình vuông ABCD có cạnh bằng \(30\;{\rm{cm}}\). Người ta gập tấm kẽm theo hai cạnh \[EF\] và \(GH\) cho đến khi \(AD\) và \(BC\) trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy.
a) Thể tích khối trụ được tính bằng công thức \(V = 30S\) trong đó \(S\) là diện tích của tam giác \(AEG\).
b) Diện tích của tam giác \(AEG\) bằng: \(\sqrt {30} .\sqrt {{{\left( {15 - x} \right)}^2}\left( {2x - 15} \right)} \).
c) Giá trị của \(x\) để thể tích khối lăng trụ lớn nhất là \(x = 10\left( {{\rm{cm}}} \right)\).
d) Thể tích khối lăng trụ lớn nhất bằng \(1250\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Quảng cáo
Trả lời:

a) Đúng. Đường cao lăng trụ là \(AD = AB = 30{\rm{cm}}\) không đổi. Để thể tích lăng trụ lớn nhất chỉ cần diện tích đáy lớn nhất.
Gọi \(I\) là trung điểm cạnh \(EG\) \( \Rightarrow AI \bot EG\) trong tam giác \[AEG\]\( \Rightarrow IG = 15 - x,\) \(\left( {0 < x < 15} \right)\).
Ta có:\[AI = \sqrt {{x^2} - {{\left( {\frac{{30 - 2x}}{2}} \right)}^2}} = \sqrt {{x^2} - {{\left( {15 - x} \right)}^2}} \] \[ = \sqrt {30x - 225} ,\,x \in \left( {\frac{{15}}{2};15} \right)\].
b) Sai. \[{S_{\Delta AEG}} = \frac{1}{2}AI.EG = \frac{1}{2}\left( {30 - 2x} \right)\sqrt {30x - 225} \] \( = \sqrt {15} .\sqrt {{{\left( {15 - x} \right)}^2}\left( {2x - 15} \right)} \).
Vậy ta cần tìm \(x \in \left( {\frac{{15}}{2};15} \right)\) để \(f\left( x \right) = {\left( {15 - x} \right)^2}\left( {2x - 15} \right)\) lớn nhất.
\(f'\left( x \right) = - 2\left( {15 - x} \right)\left( {2x - 15} \right) + 2{\left( {15 - x} \right)^2} = 2\left( {15 - x} \right)\left( {30 - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 15\\x = 10\end{array} \right.\).
Bảng biến thiên:
c) Đúng. Vậy thể tích lăng trụ lớn nhất khi \(x = 10\).
d) Sai. Thể tích lớn nhất của lăng trụ bằng \[125.30 = 3750\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).
b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).
c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:
\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).
d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).
Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).
Bảng biến thiên:
Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.