Câu hỏi:

02/10/2025 11 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên (ảnh 1)

a) Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\).

d) Đồ thị hàm số không có điểm chung với trục hoành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Từ bảng biến thiên có: Hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x =  - 1\).

b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) =  - \infty \) nên đồ thị hàm số nhận đường thẳng \(x =  - 2\) làm tiệm cận đứng.

c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x =  - 2\).

d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,\left( {x \ge 1} \right)\) là chi phí đặt hàng và vận chuyển một linh kiện

Ta có \(C' =  - \frac{{38400000}}{{{x^3}}} + \frac{{81000}}{{{{\left( {x + 3000} \right)}^2}}}\).

Cho \(C' = 0 \Leftrightarrow 12800{\left( {x + 3000} \right)^2} - 27{x^3} = 0 \Leftrightarrow x = 2400\).

Lập BBT cho hàm số trên nửa khoảng \(\left[ {1; + \infty } \right)\) ta thu được \({C_{\min }}\) khi \(x = 2400\).

Đáp án: 2400.

Câu 2

A. Hàm số có giá trị cực tiểu bằng \( - 1\).
B. Hàm số có giá trị nhỏ nhất bằng \( - 1\).
C. Hàm số có đúng một cực trị.
D. Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1\).

Lời giải

Chọn D

Dựa vào bảng biến thiên, nhận thấy đạo hàm \(y'\) của hàm số chỉ đổi dấu một lần khi \(x\) đi qua \({x_0} = 1\) nên hàm số chỉ có một cực trị duy nhất, do đó phương án D sai.

Câu 3

A. \(\left( { - \infty ; - 1} \right)\).                       
B. \(\left( { - 1;0} \right)\).                  
C. \(\left( { - 1;1} \right)\).                          
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\).                           
B. \(1\).                         
C. \(3\).                                
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = 2\).                     
B. \(y = 3\).                   
C. \(y = - 1\).                                   
D. \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\).                           
B. \(4\).                         
C. \(3\).                                
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP