Câu hỏi:

15/11/2019 8,114 Lưu

Cho hàm số y= f(x)  xác định và liên tục trên [ a; e] và có đồ thị hàm số y= f’ (x)  như hình vẽ bên. Biết rằng f(a) + f( c)) = f( b) + f( d)   .  Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= f( x)  trên [ a; e]?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy max[a;e] f(x)=f(e); min[a;e] f(x)=f(b)

Chọn  C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Điều kiện tanx ≠ m

Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)

+) đạo hàm:

y'=(tan2x+1)(2-m)(tanx-m)2=2-mcos2x.(tanx-m)2

+) Ta thấy:

1cos2x.(tanx-m)2>0;m(0;1)  

+) Để hàm số đồng biến trên (0; π/4)

y'>0m(0;1)-m+2>0m0;m1m0 hoc 1m<2

Chọn D.

Lời giải

Phương trình hoành độ giao điểm

x3 + 2mx2 + 3(m - 1)x + 2  = -x + 2 hay    x(x2 + 2mx + 3(m - 1))=0  

suy ra x = 0 hoặc x2 + 2mx + 3(m - 1) = 0    (1)

Đường thẳng d cắt (C)  tại ba điểm phân biệt khi và chỉ khi phương trình (1)  có hai nghiệm phân biệt khác 0

m2-3m+3>0m-10mm1m1

Khi đó ta có: C( x; -x1 + 2) ; B(x; -x2 + 2)  trong đó x1; x2 là nghiệm của (1)

nên theo Viet thì x1+x2=-2mx1x2=3m-3

Vậy 

CB=(x2-x1;-x2+x1)CB=2(x2-x1)2=8(m2-3m+3)

d(M;(d))=-3-1+22=2

Diện tích tam giác MBC bằng khi và chỉ khi

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP