Cho hàm số y= x4- 2( 1-m2) x2+ m+1. Tồn tại giác trị của m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất . Khi đó khẳng định nào đúng?
A. m là số nguyên dương
B. m không là số nguyên
C. m= 1
D. Tất cả sai
Quảng cáo
Trả lời:

Ta có đạo hàm y’ = 4x3- 4( 1-m2) x
Hàm số có cực đại , cực tiểu khi và chỉ khi -1< m <1
Tọa độ điểm cực trị
Phương trình đường thẳng BC: y + m4- 2m2- m=0
d( A, BC) = m4-2m2+ 1,
Vậy S đạt giá trị lớn nhất bằng 1 khi và chỉ khi m= 0.
Chọn D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 1≤ m < 2.
B. m≤ 0 .
C. m> 2.
D. Cả A và B đúng
Lời giải
+) Điều kiện tanx ≠ m
Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)
+) đạo hàm:
+) Ta thấy:
+) Để hàm số đồng biến trên (0; π/4)
Chọn D.
Câu 2
A. m=-1
B. m=-1 hoặc m=4
C. m=4
D. Không tồn tại m
Lời giải
Phương trình hoành độ giao điểm
x3 + 2mx2 + 3(m - 1)x + 2 = -x + 2 hay x(x2 + 2mx + 3(m - 1))=0
suy ra x = 0 hoặc x2 + 2mx + 3(m - 1) = 0 (1)
Đường thẳng d cắt (C) tại ba điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 0
Khi đó ta có: C( x1 ; -x1 + 2) ; B(x2 ; -x2 + 2) trong đó x1; x2 là nghiệm của (1)
nên theo Viet thì
Vậy
Diện tích tam giác MBC bằng khi và chỉ khi
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.m = 1
B.m = 1 hoặc m = - 5
C.m = 5
D.m = - 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. m>1 hoặc m<-1
B. m< -1
C. m>0
D. m>1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.