Câu hỏi:

01/02/2021 11,112

Cho các số thực x; y thõa mãn x≥0; y≥0  và x+y=1. Giá trị lớn nhất M , giá trị nhỏ nhất m  của biểu thức S=(4x2+3y)(4y2+3x)+25xy là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do x+ y= 1 nên

S=16x2y2+12(x+y)(x2-xy+y2)+34xy=16x2y2+12(x+y)2-3xy+34xy, do x+y=1=16x2y2-2xy+12

Đặt t= xy . Do x≥ 0 ; y≥0  nên

 0xy(x+y)24=14t0;14

Xét hàm số f(t) = 16t2- 2t + 12  trên [0 ; 1/4].

Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16  .

Bảng biến thiên

Từ bảng biến thiên ta có:

min0;14f(t)=f(116)=19116;    max0;14f(t)=f(14)=252

Vậy giá trị lớn nhất của S là 25/2 đạt được khi 

x+y=1xy=14x=12y=12

giá trị nhỏ nhất của S  là 191/ 16 đạt được khi

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định D= R\ { 1}.

Đạo hàm y'=-3(x-1)2, x1.

Đồ thị hàm số C có tiệm cận đứng là x= 1 và tiệm cận ngang y= 2 nên I (1 ;2 ) là giao của 2  đường tiệm cận.

Gọi M(x0; 2x0+1x0-1)(C), x01.

Tiếp tuyến ∆ của C  tại M  có phương trình là :

y=-3(x0-1)2(x-x0)+2x0+1x0-1

∆ cắt TCĐ tại A(1; 2x0+2x0-1)  và cắt TCN  tại B( 2x0-1 ; 2)  .

Ta có IA=2x0+2x0-1-2=4x0-1;  IB=(2x0-1)-1=2x0-1.

Do đó,  S=12IA.IB=124x0-1.2x0-1=4.

Chọn D.

Lời giải

Ta có: y'=2xx2+1-m.

Hàm số  Y= ln( x2+ 1) –mx+1 đồng biến trên  R khi và chỉ khi y’≥ 0 với mọi x.

g(x)=2xx2+1m, x-;+.g'(x)=-2x2+2(x2+1)2=0x=±1.

Bảng biến thiên:

Dựa vào bảng biến thiên ta có: g(x)=2xx2+1m  với  mọi x khivà chỉ khi m≤ -1.

Chọn C.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP