Câu hỏi:

18/11/2019 55,311

Cho hàm số  y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m  để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có 

Để đồ thị hàm số có hai điểm cực trị khi m khác 0.

Khi đó gọi A( 0 ; -3m-1)  và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.

Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và AB=(2m;4m3)=2m(1;2m2)

Đường thẳng d có một vectơ chỉ phương là u=(8;-1).

Ycbt 

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đạo hàm  y’ = 3x2+6x+m. Ta có 'y'=9-3m

Hàm số có cực đại và cực tiểu khi 'y'=9-3m > 0m<3  

Ta có 

Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó 

Theo định lí Viet, ta có 

Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0

Chọn C.

Câu 2

Lời giải

Điều kiện: mx2 + 1 > 0.                                    

- Nếu m = 0 thì hàm số trở thành y = x + 1 không có tiệm cận ngang.

- Nếu m < 0 thì hàm số xác định -1-m<x<1-m

Do đó, limx±y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.

- Nếu m > 0 thì hàm số xác định với mọi x.

Suy ra đường thẳng y= 1m là tiệm cận ngang của đồ thị hàm số khi x+ .

 

Suy ra đường thẳng y= - 1mlà tiệm cận ngang của đồ thị hàm số.

Vậy m > 0 thỏa mãn yêu cầu đề bài.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP