Câu hỏi:

18/11/2019 54,144

Cho hàm số y= 2x3-3( m+ 1) x2+ 6mx+ m3 với m  là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB = 2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có 

Để hàm số có hai điểm cực trị khi m khác -1

Tọa độ các điểm cực trị A( 1; m3+ 3m-1) và B( m; 3m2)  

Suy ra

 

 

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đạo hàm  y’ = 3x2+6x+m. Ta có 'y'=9-3m

Hàm số có cực đại và cực tiểu khi 'y'=9-3m > 0m<3  

Ta có 

Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó 

Theo định lí Viet, ta có 

Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0

Chọn C.

Câu 2

Lời giải

Điều kiện: mx2 + 1 > 0.                                    

- Nếu m = 0 thì hàm số trở thành y = x + 1 không có tiệm cận ngang.

- Nếu m < 0 thì hàm số xác định -1-m<x<1-m

Do đó, limx±y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.

- Nếu m > 0 thì hàm số xác định với mọi x.

Suy ra đường thẳng y= 1m là tiệm cận ngang của đồ thị hàm số khi x+ .

 

Suy ra đường thẳng y= - 1mlà tiệm cận ngang của đồ thị hàm số.

Vậy m > 0 thỏa mãn yêu cầu đề bài.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP