Câu hỏi:

18/11/2019 21,757

Cho hàm số y= f( x)  và đồ thị hình bên là đồ thị của hàm y= f’ ( x) . Hỏi đồ thị của hàm số  g(x)=2f(x)-x-12 có tối đa bao nhiêu điểm cực trị ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt h( x) = 2f( x) – ( x-1) 2

 Suy ra đạo hàm: h’( x) = 2f’(x) -2( x-1).

Ta vẽ thêm đường thẳng  y= x-1.

 

Ta có h’ (x) =0 khi f’(x) =x-1

Suy ra x=0; x=1; x=2; x=3

Theo đồ thị h’(x) > .0  khi f’(x) > x-1 

Ta có :

 

Đồ thị hàm số g( x)  có nhiều điểm cực trị nhất khi h( x)  có nhiều giao điểm với trục hoành nhất.

 Vậy đồ thị hàm số h( x)  cắt trục hoành tại nhiều nhất 4 điểm, suy ra đồ thị hàm số g(x)  có tối đa 7 điểm cực trị.

Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Phương trình đường thẳng d đi qua A và có hệ số góc k là : y= k ( x-a) + 1

+ Phương trình hoành độ giao điểm của d  và C :

Hay kx2+ (-k-ka+2) x-3+ka=0   ( *)

 

+ Với k= 0 , ta có d: y= 1 là tiệm cận ngang đồ thị hàm số nên không thể tiếp xúc được.

+ Với k≠0, d và C  tiếp xúc nhau khi (1)  có nghiệm kép

Coi đây là phương trình bậc 2 ẩn k tham số a

+ Để qua A( a; 1)vẽ được đúng  tiếp tuyến thì phương trình x =0  có đúng một nghiệm k ≠ 0.

*Xét  1 - a = 0 hay a = 1, ta có 4k + 4 = 0 hay k = -1 thỏa mãn

*Có  f(0) = 4 nên loại đi trường hợp có hai nghiệm trong đó có một nghiệm là 0.

*Còn lại là trường hợp x=0  có nghiệm kép khi

Tổng là 1+ 3/2=5/2.

Chọn C.

Câu 2

Cho hàm số y= f(x) . Biết f(x)  có đạo hàm f’(x)  và hàm số y= f’(x) có đồ thị như hình vẽ. Đặt g(x) = f(x+1). Kết luận nào sau đây đúng?

Lời giải

 

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay