Câu hỏi:

17/02/2021 8,955 Lưu

Cho hàm số y = f(x) = ax4 + bx2 + c (a > 0) có đồ thị (C), đồ thị hàm số y = f’(x). Đồ thị hàm số y = f(x)  tiếp xúc với trục hoành tại hai điểm. Tính diện tích  của hình phẳng giới hạn bởi đồ thị (C) và trục hoành?

A. 715

B. 815

C. 1415

D. 1615

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Từ đồ thị của hàm số   a > 0 ta dễ dàng có được đồ thị hàm số y = f’(x)  như sau:

Ta có : f’(x) = 4ax3 + 2bx

 Đồ thị hàm số y = f’(x)  đi qua  ta tìm được a = 1 và b = -2

Suy ra hàm số đã cho có dạng: f(x) = x4 - 2x2 + d và f’(x) = 4x3 - 4x.

+ Do (C) tiếp xúc với trục hoành nên f’(x) = 0 khi x = 0; x = 1; x = -1.

Do (C) đối xứng qua trục tung nên (C) tiếp xúc với trục hoành tại 2 điểm (1; 0) và (-1; 0).

Do đó: f(0) = 1  suy ra 1= 0 - 2.0 + d nên d = 1

Vậy hàm số cần tìm là: y = x4 - 2x2 + 1  

+ Xét phương trình hoành độ giao điểm của (C) với trục hoành:

x4 - 2x2 + 1 = 0 nên x = ±1

Chọn D.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Phương trình đường thẳng d đi qua A và có hệ số góc k là : y= k ( x-a) + 1

+ Phương trình hoành độ giao điểm của d  và C :

Hay kx2+ (-k-ka+2) x-3+ka=0   ( *)

 

+ Với k= 0 , ta có d: y= 1 là tiệm cận ngang đồ thị hàm số nên không thể tiếp xúc được.

+ Với k≠0, d và C  tiếp xúc nhau khi (1)  có nghiệm kép

Coi đây là phương trình bậc 2 ẩn k tham số a

+ Để qua A( a; 1)vẽ được đúng  tiếp tuyến thì phương trình x =0  có đúng một nghiệm k ≠ 0.

*Xét  1 - a = 0 hay a = 1, ta có 4k + 4 = 0 hay k = -1 thỏa mãn

*Có  f(0) = 4 nên loại đi trường hợp có hai nghiệm trong đó có một nghiệm là 0.

*Còn lại là trường hợp x=0  có nghiệm kép khi

Tổng là 1+ 3/2=5/2.

Chọn C.

Câu 2

A. Hàm số g( x)  có hai điểm cực trị.

B. Hàm số g(x)  đồng biến trên khoảng (1; 3).

C. Hàm số g(x)  nghịch biến trên khoảng (2; 4).

D. Hàm số g(x) có hai điểm cực đại và một điểm cực tiểu.

Lời giải

 

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP