Câu hỏi:

14/05/2021 810

Cho x, y là hai số thực thỏa mãn điều kiện x2+y2+xy+4=4y+3x. Tìm giá trị lớn nhất của biểu thức P=3x3y3+20x2+2xy+5y2+39x 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo giả thiết:

x2+y2+xy+4=4y+3x

y2+x4y+x23x+4=0

Ta xem đây là phương trình bậc hai ẩn y và khi đó điều kiện có nghiệm là:

Δ=x424x23x+40

x28x+164x2+12x160

3x2+4x00x43

Từ giả thiết suy ra x2+y2+xy=4y+3x4. Khi đó:

P=3xyx2+xy+y2+20x2+2xy+5y2+39x

P=3xy3x+4y4+20x2+2xy+5y2+39x

P=33x2+xy4y24x+4y+20x2+2xy+5y2+39x

P=29x2+5xy7y2+27x+12y

P=5x2+5xy+5y2+24x212y2+27x+12y

P=5x2+xy+y2+24x212y2+27x+12y

P=53x+4y4+24x212y2+27x+12y

P=24x212y2+42x+32y20

P=212x26y2+21x+16y20

Đặt gy=6y2+16y+21x+12x2 (ta xem x là tham số)

Khi đó  gyg43=12x2+21x+323

Do x0;43 nên 12x2+21x+32360

Suy ra gy60. Vậy giá trị lớn nhất của P là 100 khi  x=y=43

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do x là độ dài của đoạn dây cuộn thành hình tròn (0 < x < a). Suy ra chiều dài đoạn còn lại là  ax

Gọi r là bán kính của đường tròn. Chu vi đường tròn:  2πr=xr=x2π

Do đó diện tích hình tròn là:  S1=π.r2=x24π

Chu vi hình vuông là ax cạnh hình vuông là:  ax4

Do đó diện tích hình vuông : S2=ax42 

Tổng diện tích hai hình:

S=x24π+ax42=4x2+πax216π=4+π.x22aπx+πa216π

Xét hàm số Sx=4+π.x22aπx+πa216π ta có  S'x=24+π.x2aπ16π=4+π.xaπ8π

Cho S'x=04+πxaπ=0x=aπ4+π. Ta có BBT như sau:

Suy ra hàm S chỉ có một cực trị và là một cực tiểu tại  x=aπ4+π

Do đó S đạt giá trị nhỏ nhất tại x=aπ4+π

Đáp án cần chọn là: C

Câu 2

Lời giải

TXĐ:x105x0x1x5D=1;5

Ta có:  f'x=12x1125x=5xx12x1.5x

Cho  f'x=05x=x15x=x1x=31;5

Mặt khác  f1=2,f3=22,f5=2

Vậy max1;5fx=f(3)=22

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP