Câu hỏi:

08/06/2021 386

Cho hàm số y=2x3+mx212x13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có y'=6x2+2mx12

Do Δ'=m2+72>0,mR nên hàm số luôn có hai điểm cực trị x1,x2 với x1,x2 là hai nghiệm của phương trình y’ = 0

Theo định lí Viet, ta có: x1+x2=m3

Gọi Ax1;y1 và Bx2;y2 là hai điểm cực trị của đồ thị hàm số

Yêu cầu bài toán x1=x2x1=x2(dox1x2)

x1+x2=0m3=0m=0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Để đồ thị hàm số y=mx32m1x2+2mxm1 có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình mx32m1x2+2mxm1=0 (*) phải có 3 nghiệm phân biệt.

Ta có:

mx32m1x2+2mxm1=0x1mx2m1x+m+1=0x=1mx2m1x+m+1=0(**)

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

m0m.1m1.1+m+10Δ=m124mm+1>0m0mm+1+m+10m22m+14m24m>0m0m23m26m+1>0m0m23233<m<3+233

Mà mZm=1

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Lời giải

Đáp án B

Ta có: y'=3x26x9;y''=0

x=1y=5+mx=3y=27+m

Suy ra tọa độ hai điểm cực trị là: A1;5+m,B(3;27+m)

Suy ra đường thẳng đi qua hai điểm A, B có phương trình: y=8x+m3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP