Đồ thị hàm số có các điểm cực đại, cực tiểu có hoành độ dương khi m thỏa mãn:
A. m > 2
B. 0 < m < 2
C. -2 < m < 0
D. 0 < m < 1
Quảng cáo
Trả lời:

Đáp án D
Hàm số có các cực đại, cực tiểu và có hoành độ dương khi y’ = 0 có 2 nghiệm dương phân biệt thỏa mãn tập xác định
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. (-1;6)
B. (-1;12)
C. (1;4)
D. (-3;28)
Lời giải
Đáp án B.
y' = 3x2 + 6x – 9
y’’ = 6x + 6
y’’ = 0 x = -1.
Thay x = -1 vào hàm số y = 12
Câu 2
A. m > 3 .
B. m ≤ -3
C. m ≤ 0 hoặc m >3
D. -3 < m < 0
Lời giải
Đáp án B.
Với m = 0, hàm số đã cho là parabol y = 3x2 – 1 chỉ có cực tiểu. Vậy m = 0 không thỏa mãn
Với m ≠ 0, hàm số đã cho là một hàm trùng phương.
Dựa vào đồ thị, muốn hàm số chỉ có cực đại mà không có cực tiểu thì hàm số chỉ có một cực trị, muốn đó là cực đại thì
Câu 3
A. (-∞; -1) và (0; 1)
B. (-1; 0) và (0; 1)
C. (-1;0) và (1; +∞)
D. Đồng biến trên R
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hàm số đồng biến trên mỗi khoảng (-∞; -1) và (-1; +∞)
B. Hàm số nghịch biến với mọi x ≠ 1
C. Hàm số nghịch biến trên tập R \ {-1}
D. Hàm số nghịch biến trên mỗi khoảng (-∞; -1) và (-1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. (-1;1).
B. (-∞; 1).
C. (0; 2).
D. (2; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. m = 3
B. m = 0 hoặc m = 3
C. m = 0
D. m ≠ 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.