Câu hỏi:

04/07/2022 596

Trong mặt phẳng tọa độ Oxy (Hình 2), hãy:

Tìm hoành độ và tung độ của điểm A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Từ điểm A, kẻ đường thẳng vuông góc với trục hoành và ta thấy đường thẳng này cắt trục hoành tại điểm ứng với số 2. Tương tự, từ A kẻ đường thẳng vuông góc với trục tung và ta thấy đường thẳng này cắt trục tung tại điểm ứng với số 2.

Media VietJack

Vậy hoành độ của điểm A là 2 và tung độ của điểm A là 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi tọa độ điểm A(xA; yA), B(xB; yB), C(xC; yC).

Ta có: \(\overrightarrow {AP} = \left( {6 - {x_A};\,2 - {y_A}} \right)\), \(\overrightarrow {PB} = \left( {{x_B} - 6;\,{y_B} - 2} \right)\), \(\overrightarrow {BM} = \left( {1 - {x_B};\,\left( { - 2} \right) - {y_B}} \right)\), \(\overrightarrow {MC} = \left( {{x_C} - 1;{y_C} - \left( { - 2} \right)} \right)\), \[\overrightarrow {AN} = \left( {4 - {x_A};\,\left( { - 1} \right) - {y_A}} \right)\], \(\overrightarrow {NC} = \left( {{x_C} - 4;\,{y_c} - \left( { - 1} \right)} \right)\).

Vì P là trung điểm của AB nên \(\overrightarrow {AP} = \overrightarrow {PB} \Leftrightarrow \left\{ \begin{array}{l}6 - {x_A} = {x_B} - 6\\2 - {y_A} = {y_B} - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 12 - {x_B}\\{y_A} = 4 - {y_B}\end{array} \right.\) (1)

Vì M là trung điểm của BC nên \(\overrightarrow {BM} = \overrightarrow {MC} \Leftrightarrow \left\{ \begin{array}{l}1 - {x_B} = {x_C} - 1\\\left( { - 2} \right) - {y_B} = {y_C} - \left( { - 2} \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2 - {x_C}\\{y_B} = - 4 - {y_C}\end{array} \right.\)(2)

Vì N là trung điểm của AC nên \(\overrightarrow {AN} = \overrightarrow {NC} \Leftrightarrow \left\{ \begin{array}{l}4 - {x_A} = {x_C} - 4\\\left( { - 1} \right) - {y_A} = {y_C} - \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = - 2 - {y_C}\end{array} \right.\)(3)

Từ (1) và (3) suy ra: \(\left\{ \begin{array}{l}12 - {x_B} = 8 - {x_C}\\4 - {y_B} = - 2 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 + {x_C}\\{y_B} = 6 + {y_C}\end{array} \right.\) (4)

Từ (2) và (4) suy ra: \(\left\{ \begin{array}{l}2 - {x_C} = 4 + {x_C}\\ - 4 - {y_C} = 6 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = - 2\\2{y_C} = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = - 1\\{y_C} = - 5\end{array} \right.\).

Vậy tọa độ điểm C là C(– 1; – 5).

Thay tọa độ điểm C vào (3) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - \left( { - 1} \right) = 9\\{y_A} = - 2 - \left( { - 5} \right) = 3\end{array} \right.\).

Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 + \left( { - 1} \right) = 3\\{y_B} = 6 + \left( { - 5} \right) = 1\end{array} \right.\).

Vậy tọa độ các điểm A, B, C là A(9; 3), B(3; 1) và C(– 1; – 5).

Lời giải

Hướng dẫn giải

Ta có: \(\overrightarrow {BC} = \left( {3 - \left( { - 1} \right);\,\left( { - 1} \right) - 1} \right)\). Do đó \(\overrightarrow {BC} = \left( {4;\,\, - 2} \right)\).

Gọi tọa độ điểm M(x; y), khi đó \(\overrightarrow {AM} = \left( {x - 2;y - 3} \right)\).

\(\overrightarrow {AM} = \overrightarrow {BC} \)\( \Leftrightarrow \overrightarrow {AM} = \left( {4; - 2} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 4\\y - 3 = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 1\end{array} \right.\).

Vậy tọa độ điểm M cần tìm là M(6; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay