Câu hỏi:

04/07/2022 612

Trong mặt phẳng tọa độ Oxy (Hình 2), hãy:

Tìm hoành độ và tung độ của điểm A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Từ điểm A, kẻ đường thẳng vuông góc với trục hoành và ta thấy đường thẳng này cắt trục hoành tại điểm ứng với số 2. Tương tự, từ A kẻ đường thẳng vuông góc với trục tung và ta thấy đường thẳng này cắt trục tung tại điểm ứng với số 2.

Media VietJack

Vậy hoành độ của điểm A là 2 và tung độ của điểm A là 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi tọa độ điểm A(xA; yA), B(xB; yB), C(xC; yC).

Ta có: \(\overrightarrow {AP} = \left( {6 - {x_A};\,2 - {y_A}} \right)\), \(\overrightarrow {PB} = \left( {{x_B} - 6;\,{y_B} - 2} \right)\), \(\overrightarrow {BM} = \left( {1 - {x_B};\,\left( { - 2} \right) - {y_B}} \right)\), \(\overrightarrow {MC} = \left( {{x_C} - 1;{y_C} - \left( { - 2} \right)} \right)\), \[\overrightarrow {AN} = \left( {4 - {x_A};\,\left( { - 1} \right) - {y_A}} \right)\], \(\overrightarrow {NC} = \left( {{x_C} - 4;\,{y_c} - \left( { - 1} \right)} \right)\).

Vì P là trung điểm của AB nên \(\overrightarrow {AP} = \overrightarrow {PB} \Leftrightarrow \left\{ \begin{array}{l}6 - {x_A} = {x_B} - 6\\2 - {y_A} = {y_B} - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 12 - {x_B}\\{y_A} = 4 - {y_B}\end{array} \right.\) (1)

Vì M là trung điểm của BC nên \(\overrightarrow {BM} = \overrightarrow {MC} \Leftrightarrow \left\{ \begin{array}{l}1 - {x_B} = {x_C} - 1\\\left( { - 2} \right) - {y_B} = {y_C} - \left( { - 2} \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2 - {x_C}\\{y_B} = - 4 - {y_C}\end{array} \right.\)(2)

Vì N là trung điểm của AC nên \(\overrightarrow {AN} = \overrightarrow {NC} \Leftrightarrow \left\{ \begin{array}{l}4 - {x_A} = {x_C} - 4\\\left( { - 1} \right) - {y_A} = {y_C} - \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8 - {x_C}\\{y_A} = - 2 - {y_C}\end{array} \right.\)(3)

Từ (1) và (3) suy ra: \(\left\{ \begin{array}{l}12 - {x_B} = 8 - {x_C}\\4 - {y_B} = - 2 - {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 + {x_C}\\{y_B} = 6 + {y_C}\end{array} \right.\) (4)

Từ (2) và (4) suy ra: \(\left\{ \begin{array}{l}2 - {x_C} = 4 + {x_C}\\ - 4 - {y_C} = 6 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{x_C} = - 2\\2{y_C} = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = - 1\\{y_C} = - 5\end{array} \right.\).

Vậy tọa độ điểm C là C(– 1; – 5).

Thay tọa độ điểm C vào (3) ta được: \(\left\{ \begin{array}{l}{x_A} = 8 - \left( { - 1} \right) = 9\\{y_A} = - 2 - \left( { - 5} \right) = 3\end{array} \right.\).

Thay tọa độ điểm C vào (4) ta được: \(\left\{ \begin{array}{l}{x_B} = 4 + \left( { - 1} \right) = 3\\{y_B} = 6 + \left( { - 5} \right) = 1\end{array} \right.\).

Vậy tọa độ các điểm A, B, C là A(9; 3), B(3; 1) và C(– 1; – 5).

Lời giải

Hướng dẫn giải

Ta có: \(\overrightarrow {BC} = \left( {3 - \left( { - 1} \right);\,\left( { - 1} \right) - 1} \right)\). Do đó \(\overrightarrow {BC} = \left( {4;\,\, - 2} \right)\).

Gọi tọa độ điểm M(x; y), khi đó \(\overrightarrow {AM} = \left( {x - 2;y - 3} \right)\).

\(\overrightarrow {AM} = \overrightarrow {BC} \)\( \Leftrightarrow \overrightarrow {AM} = \left( {4; - 2} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 4\\y - 3 = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 1\end{array} \right.\).

Vậy tọa độ điểm M cần tìm là M(6; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP