Câu hỏi:

11/07/2024 2,538

A. Các câu hỏi trong bài

Từ xa xưa, người Hy Lạp đã biết rằng giao tuyến của mặt nón tròn xoay và một mặt phẳng không đi qua đỉnh của mặt nón là đường tròn hoặc đường cong mà ta gọi là đường conic (Hình 48). Từ “đường conic” xuất phát từ gốc tiếng Hy Lạp konos, nghĩa là mặt nón.

Media VietJack

Đường conic gồm những loại đường nào và được xác định như thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Sau bài học này ta sẽ biết đường conic gồm đường parabol, đường elip, đường hypebol và cách xác định phương trình chính tắc của mỗi loại đường conic trên.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Phương trình chính tắc của parabol có dạng y2 = 2px (với p > 0).

Vì AB = 40 và Ox là đường trung trực của đoạn AB nên khoảng cách từ điểm A đến trục Ox là \(\frac{{40}}{2} = 20\).

Chiều sâu h bằng khoảng cách từ O đến AB và cũng chính bằng khoảng cách từ điểm A đến trục Oy và bằng 30.

Do đó, parabol đi qua điểm A có hoành độ là 30 (khoảng cách từ A đến trục Oy) và tung độ là 20 (khoảng cách từ A đến trục Ox) hay A(30; 20).

Thay tọa độ điểm A vào phương trình chính tắc của parabol, ta được:

202 = 2p . 30 60p = 400 p = \(\frac{{20}}{3}\) (thỏa mãn p > 0).

Vậy phương trình chính tắc của parabol cần lập là \({y^2} = 2.\frac{{20}}{3}.x\,\,hay\,\,{y^2} = \frac{{40}}{3}x\).

Lời giải

Hướng dẫn giải

Ta có: \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{7^2}}} + \frac{{{y^2}}}{{{5^2}}} = 1.\)

Do a > b > 0 nên elip (E) có a = 7, b = 5.

Ta có: c2 = a2 – b2 = 72 – 52 = 24, suy ra \(c = \sqrt {24} = 2\sqrt 6 \).

Vậy tọa độ các giao điểm của (E) với trục Ox là A1(– 7; 0), A2(7; 0), tọa độ các giao điểm của (E) với trục Oy là B(0; – 5), B2(0; 5) và tọa độ các tiêu điểm của E là \({F_1}\left( { - 2\sqrt 6 ;\,\,0} \right),\,\,{F_2}\left( {2\sqrt 6 ;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay