Câu hỏi:
04/07/2022 2,214Trong mặt phẳng, xét đường elip (E) là tập hợp các điểm M sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c (với a > c > 0).
Ta chọn hệ trục tọa độ Oxy có gốc là trung điểm của F1F2, trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 52). Khi đó, F1(– c; 0) và F2(c; 0) là hai tiêu điểm của elip (E). Chứng minh rằng:
a) A1(– a; 0) và A2(a; 0) đều là giao điểm của elip (E) với trục Ox.
Câu hỏi trong đề: Bài tập Ba đường conic có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \({A_1}{F_1} = \sqrt {{{\left( {\left( { - c} \right) - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \left| { - c + a} \right|\) = a – c (do a > c > 0).
\({A_1}F{ & _2} = \sqrt {{{\left( {c - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \left| {a + c} \right|\) = a + c
Do đó: A1F1 + A2F2 = a – c + a + c = 2a.
Vậy điểm A1(– a; 0) thuộc elip (E).
Mà A1(– a; 0) thuộc trục Ox nên A1(– a; 0) là giao điểm của elip (E) với trục Ox.
Tương tự, ta chứng minh được A2(a; 0) là giao điểm của elip (E) với trục Ox.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Phương trình chính tắc của parabol có dạng y2 = 2px (với p > 0).
Vì AB = 40 và Ox là đường trung trực của đoạn AB nên khoảng cách từ điểm A đến trục Ox là \(\frac{{40}}{2} = 20\).
Chiều sâu h bằng khoảng cách từ O đến AB và cũng chính bằng khoảng cách từ điểm A đến trục Oy và bằng 30.
Do đó, parabol đi qua điểm A có hoành độ là 30 (khoảng cách từ A đến trục Oy) và tung độ là 20 (khoảng cách từ A đến trục Ox) hay A(30; 20).
Thay tọa độ điểm A vào phương trình chính tắc của parabol, ta được:
202 = 2p . 30 ⇔ 60p = 400 ⇔ p = \(\frac{{20}}{3}\) (thỏa mãn p > 0).
Vậy phương trình chính tắc của parabol cần lập là \({y^2} = 2.\frac{{20}}{3}.x\,\,hay\,\,{y^2} = \frac{{40}}{3}x\).
Lời giải
Hướng dẫn giải
Ta có: \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{7^2}}} + \frac{{{y^2}}}{{{5^2}}} = 1.\)
Do a > b > 0 nên elip (E) có a = 7, b = 5.
Ta có: c2 = a2 – b2 = 72 – 52 = 24, suy ra \(c = \sqrt {24} = 2\sqrt 6 \).
Vậy tọa độ các giao điểm của (E) với trục Ox là A1(– 7; 0), A2(7; 0), tọa độ các giao điểm của (E) với trục Oy là B1(0; – 5), B2(0; 5) và tọa độ các tiêu điểm của E là \({F_1}\left( { - 2\sqrt 6 ;\,\,0} \right),\,\,{F_2}\left( {2\sqrt 6 ;\,\,0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận