Câu hỏi:
13/07/2024 3,229Quảng cáo
Trả lời:
Hướng dẫn giải
Xét tam giác ABE có:
\[\widehat {BAE} + \widehat {ABE} + \widehat {AEB} = 180^\circ \]
\[\widehat {ABE} = 180^\circ - \widehat {BAE} - \widehat {AEB}\] (1)
Xét tam giác CDE có:
\[\widehat {DCE} + \widehat {DEC} + \widehat {EDC} = 180^\circ \]
\[\widehat {EDC} = 180^\circ - \widehat {DCE} - \widehat {DEC}\] (2)
Mà \(\widehat {BAE} = \widehat {DCE}\) (giả thiết); \(\widehat {AEB} = \widehat {DEC}\) (hai góc đối đỉnh) (3)
Từ (1), (2), (3) ta suy ra \(\widehat {ABE} = \widehat {EDC}\).
Xét ∆ABE và ∆CDE có:
\(\widehat {ABE} = \widehat {EDC}\) (chứng minh trên)
AB = CD (giả thiết)
\(\widehat {BAE} = \widehat {DCE}\) (giả thiết)
Do đó, ∆ABE = ∆CDE (g – c – g).
Suy ra, AE = CE; BE = DE (các cặp cạnh tương ứng)
Vì AE = CE và E nằm giữa A và C nên E là trung điểm của AC;
Vì BE = DE và B nằm giữa D và B nên E là trung điểm của BD.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Vì ∆AED = ∆BEC nên AE = BE; ED = EC.
Ta có: AC = AE + EC; BD = BE + ED.
Do đó, AC = BD.
Xét ∆ABD và ∆BAC ta có:
AC = BD (chứng minh trên)
AB chung
AD = CB (giả thiết)
Do đó, ∆ABD = ∆BAC (c – c – c)
Suy ra \(\widehat {ABD} = \widehat {BAC}\) (hai góc tương ứng)
Xét tam giác AEB có:
\(\widehat {ABE} + \widehat {BAE} + \widehat {AEB} = 180^\circ \)
Do đó, \(2\widehat {ABE} = 180^\circ - \widehat {AEB}\) (vì \(\widehat {ABE} = \widehat {BAE}\) do \(\widehat {ABD} = \widehat {BAC}\))
Suy ra \(\widehat {ABE} = \frac{{180^\circ - \widehat {AEB}}}{2}\) (4)
Xét ∆ACD và ∆BDC ta có:
AC = BD (chứng minh trên)
CD chung
AD = CB (giả thiết)
Do đó, ∆ACD = ∆BDC (c – c – c)
Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)
Xét tam giác DEC có:
\(\widehat {DCE} + \widehat {EDC} + \widehat {DEC} = 180^\circ \)
Do đó, \(2\widehat {EDC} = 180^\circ - \widehat {DEC}\) (vì \(\widehat {EDC} = \widehat {DCE}\) do \(\widehat {ACD} = \widehat {BDC}\))
Suy ra \(\widehat {EDC} = \frac{{180^\circ - \widehat {DEC}}}{2}\) (5)
Lại có, \(\widehat {AEB},\,\,\widehat {DEC}\) là hai góc đối đỉnh nên \(\widehat {AEB} = \widehat {DEC}\) (6)
Từ (4); (5); (6) suy ra \(\widehat {ABE}\) = \(\widehat {EDC}\) hay \(\widehat {ABD} = \widehat {BDC}\).
Mà hai góc này lại ở vị trí so le trong nên AB // CD.
Lời giải
Hướng dẫn giải
Vì M là trung điểm của BC nên BM = MC = \(\frac{{BC}}{2}\)
Vì N là trung điểm của EF nên EN = NF = \(\frac{{EF}}{2}\)
Mà BC = EF (giả thiết) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
AB = DE (giả thiết)
BM = EN (chứng minh trên)
AM = DN (giả thiết)
Do đó, ∆ABM = ∆DEN (c – c – c).
Suy ra, \(\widehat {ABM} = \widehat {DEN}\)(hai góc tương ứng) hay \(\widehat {ABC} = \widehat {DEF}\).
Xét ∆ABC và ∆DEF ta có:
AB = DE (giả thiết)
BC = EF (giả thiết)
\(\widehat {ABC} = \widehat {DEF}\) (chứng minh trên)
Do đó, ∆ABC = ∆DEF (c – g – c).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận