Câu hỏi:

12/07/2022 577

Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:

AB song song với DC.

Media VietJack

Siêu phẩm 30 đề thi thử THPT quốc gia 2024 do thầy cô VietJack biên soạn, chỉ từ 100k trên Shopee Mall.

Mua ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Vì ∆AED = ∆BEC nên AE = BE; ED = EC.

Ta có: AC = AE + EC; BD = BE + ED.

Do đó, AC = BD.

Xét ∆ABD và ∆BAC ta có:  

AC = BD (chứng minh trên)

AB chung

AD = CB (giả thiết)

Do đó, ∆ABD = ∆BAC (c – c – c)

Suy ra \(\widehat {ABD} = \widehat {BAC}\) (hai góc tương ứng)

Xét tam giác AEB có:

\(\widehat {ABE} + \widehat {BAE} + \widehat {AEB} = 180^\circ \)

Do đó, \(2\widehat {ABE} = 180^\circ - \widehat {AEB}\) (vì \(\widehat {ABE} = \widehat {BAE}\) do \(\widehat {ABD} = \widehat {BAC}\))

Suy ra \(\widehat {ABE} = \frac{{180^\circ - \widehat {AEB}}}{2}\)  (4)

Xét ∆ACD và ∆BDC ta có:  

AC = BD (chứng minh trên)

CD chung

AD = CB (giả thiết)

Do đó, ∆ACD = ∆BDC (c – c – c)

Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)

Xét tam giác DEC có:

\(\widehat {DCE} + \widehat {EDC} + \widehat {DEC} = 180^\circ \)

Do đó, \(2\widehat {EDC} = 180^\circ - \widehat {DEC}\) (vì \(\widehat {EDC} = \widehat {DCE}\) do \(\widehat {ACD} = \widehat {BDC}\))

Suy ra \(\widehat {EDC} = \frac{{180^\circ - \widehat {DEC}}}{2}\) (5)

Lại có, \(\widehat {AEB},\,\,\widehat {DEC}\) là hai góc đối đỉnh nên \(\widehat {AEB} = \widehat {DEC}\) (6)

Từ (4); (5); (6) suy ra \(\widehat {ABE}\) = \(\widehat {EDC}\) hay \(\widehat {ABD} = \widehat {BDC}\).

Mà hai góc này lại ở vị trí so le trong nên AB // CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:

∆AED = ∆BEC.

Media VietJack

Xem đáp án » 12/07/2022 1,253

Câu 2:

Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, \(\widehat {BAE} = \widehat {DCE}\). Chứng minh rằng:
E là trung điểm của các đoạn thẳng AC và BD.
Media VietJack

Xem đáp án » 12/07/2022 760

Câu 3:

Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).

Chứng minh rằng ∆ABC = ∆ABD.

Media VietJack

Xem đáp án » 12/07/2022 716

Câu 4:

Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).

Chứng minh rằng AD = BC.

Media VietJack

Xem đáp án » 12/07/2022 653

Câu 5:

Cho tam giác ABC bằng tam giác DEF (H.4.28).

Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.

Media VietJack

Xem đáp án » 12/07/2022 614

Câu 6:

Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.

Media VietJack

Xem đáp án » 12/07/2022 565

Bình luận


Bình luận