Câu hỏi:

13/07/2024 2,321

Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.

Media VietJack

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét ∆OAB và ∆OCD ta có:

OA = OC (giả thiết)

\(\widehat {AOB} = \widehat {COD}\) (hai góc đối đỉnh)

OB = OD (giả thiết)

Do đó, ∆OAB = ∆OCD (c – g – c).

Suy ra AB = DC và \(\widehat {BAO} = \widehat {OCD}\) hay \(\widehat {BAC} = \widehat {ACD}\).

Mà hai góc này ở vị trí so le trong, do đó AB // DC (1).

Xét ∆OAD và ∆OCB ta có:

OA = OC (giả thiết)

\(\widehat {AOD} = \widehat {BOC}\) (hai góc đối đỉnh)

OD = OB (giả thiết)

Do đó, ∆OAD = ∆OCB (c – g – c).

Suy ra AD = BC và \(\widehat {OAD} = \widehat {OCB}\) hay \(\widehat {CAD} = \widehat {ACB}\).

Mà hai góc này ở vị trí so le trong nên AD // BC (2).

Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành.

Ta có: OA = OC = OB = OD, AC = OA + OC, BD = OB + OD.

Do đó, AC = BD.

 Xét tam giác ABD và tam giác DCA có:

AB = DC (chứng minh trên)

AD: cạnh chung

BD = AC (chứng minh trên)

Do đó, ∆ABD = ∆DCA (c – c – c).

Suy ra \(\widehat {BAD} = \widehat {CDA}\).

Lại có: \(\widehat {BAD} + \widehat {CDA} = 180^\circ \) (do AB // DC, hai góc ở vị trí trong cùng phía)

Do đó: \(\widehat {BAD} = \widehat {CDA} = \frac{{180^\circ }}{2} = 90^\circ \).

Vậy hình bình hành ABCD có một góc vuông nên nó là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:

AB song song với DC.

Media VietJack

Xem đáp án » 13/07/2024 3,229

Câu 2:

Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, \(\widehat {BAE} = \widehat {DCE}\). Chứng minh rằng:
E là trung điểm của các đoạn thẳng AC và BD.
Media VietJack

Xem đáp án » 13/07/2024 2,873

Câu 3:

Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.

Media VietJack

Xem đáp án » 13/07/2024 2,864

Câu 4:

Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).

Chứng minh rằng ∆ABC = ∆ABD.

Media VietJack

Xem đáp án » 13/07/2024 2,568

Câu 5:

Cho tam giác ABC bằng tam giác DEF (H.4.28).

Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.

Media VietJack

Xem đáp án » 13/07/2024 2,346

Câu 6:

Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).

Chứng minh rằng AD = BC.

Media VietJack

Xem đáp án » 13/07/2024 2,164

Bình luận


Bình luận