Câu hỏi:
13/07/2024 1,879Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì M là trung điểm của BC nên BM = MC = \(\frac{{BC}}{2}\)
Vì N là trung điểm của EF nên EN = NF = \(\frac{{EF}}{2}\)
Mà BC = EF (giả thiết) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
AB = DE (giả thiết)
BM = EN (chứng minh trên)
AM = DN (giả thiết)
Do đó, ∆ABM = ∆DEN (c – c – c).
Suy ra, \(\widehat {ABM} = \widehat {DEN}\)(hai góc tương ứng) hay \(\widehat {ABC} = \widehat {DEF}\).
Xét ∆ABC và ∆DEF ta có:
AB = DE (giả thiết)
BC = EF (giả thiết)
\(\widehat {ABC} = \widehat {DEF}\) (chứng minh trên)
Do đó, ∆ABC = ∆DEF (c – g – c).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
AB song song với DC.
Câu 2:
Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).
Chứng minh rằng ∆ABC = ∆ABD.
Câu 3:
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
∆AED = ∆BEC.
Câu 4:
Câu 5:
Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Câu 6:
Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).
Chứng minh rằng AD = BC.
về câu hỏi!