Câu hỏi:

13/07/2024 1,355

Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

∆AEB và ∆DEC là các tam giác cân đỉnh E.

Media VietJack

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét tam giác vuông ADB và tam giác vuông BCA có:

AB: cạnh huyền chung

AD = CB (gt)

Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).

Suy ra \(\widehat {DBA} = \widehat {CAB}\), hay \(\widehat {EBA} = \widehat {EAB}\).

Khi đó tam giác EAB cân tại đỉnh E.

Xét tam giác vuông ADE và tam giác vuông BCE có:

AD = CB (gt)

EA = EB (∆EAB cân tại đỉnh E)

Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).

Suy ra ED = EC.

Do đó, tam giác EDC cân tại đỉnh E.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.
Media VietJack

Xem đáp án » 13/07/2024 1,710

Câu 2:

Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: \(\widehat {MBA} = \widehat {MCA}\).
Media VietJack

Xem đáp án » 13/07/2024 1,345

Câu 3:

Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?

a) AB = AC.

b) Tam giác ABC đều.

c) \(\widehat {ABC} = \widehat {ACB}\).

d) Tam giác ABC cân tại đỉnh A.

Xem đáp án » 13/07/2024 1,266

Câu 4:

Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.

Media VietJack

Xem đáp án » 13/07/2024 1,076

Câu 5:

Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

∆ABD vuông tại B.

Media VietJack

Xem đáp án » 13/07/2024 1,021

Câu 6:

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{{AB}}{2}\).

Media VietJack

Xem đáp án » 13/07/2024 1,017

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store