Câu hỏi:

13/07/2024 2,505

Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

∆AEB và ∆DEC là các tam giác cân đỉnh E.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét tam giác vuông ADB và tam giác vuông BCA có:

AB: cạnh huyền chung

AD = CB (gt)

Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).

Suy ra \(\widehat {DBA} = \widehat {CAB}\), hay \(\widehat {EBA} = \widehat {EAB}\).

Khi đó tam giác EAB cân tại đỉnh E.

Xét tam giác vuông ADE và tam giác vuông BCE có:

AD = CB (gt)

EA = EB (∆EAB cân tại đỉnh E)

Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).

Suy ra ED = EC.

Do đó, tam giác EDC cân tại đỉnh E.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tam giác ABE vuông tại E, do đó: \(\widehat A + \widehat {ABE} = 90^\circ \Rightarrow \widehat {ABE} = 90^\circ - \widehat A\).

Tam giác ACF vuông tại F, do đó: \(\widehat A + \widehat {ACF} = 90^\circ \Rightarrow \widehat {ACF} = 90^\circ - \widehat A\).

Từ đó, suy ra \(\widehat {ABE} = \widehat {ACF}\).

Xét tam giác vuông AEB và tam giác vuông AFC có:

BE = CF (theo giả thiết)

\(\widehat {ABE} = \widehat {ACF}\) (cmt)

Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy tam giác ABC cân tại đỉnh A.

Lời giải

Hướng dẫn giải

Xét tam giác vuông ABH và tam giác vuông ACH có:

AB = AC (∆ABC cân tại đỉnh A)

AH: cạnh chung

Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra \(\widehat {BAH} = \widehat {CAH}\), hay \(\widehat {BAM} = \widehat {CAM}\).

Xét tam giác ABM và ACM có:

AB = AC (∆ABC cân tại đỉnh A)

\(\widehat {BAM} = \widehat {CAM}\)

AM: cạnh chung

Do đó, ∆ABM = ∆ACM (c – g – c).

Suy ra \(\widehat {MBA} = \widehat {MCA}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP