Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
997 lượt thi câu hỏi 30 phút
1172 lượt thi
Thi ngay
1027 lượt thi
21 lượt thi
22 lượt thi
1023 lượt thi
1448 lượt thi
827 lượt thi
1063 lượt thi
Câu 1:
Cho ∆ABC có AB = AC. Gọi D, E là hai điểm thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE. Khẳng định nào sau đây đúng nhất?
A. BE = CD;
B. ∆ABE = ∆ACD;
C. EAB^=DAC^;
Cho hình vẽ sau. Biết AB // CD và AD // BC.
Hình vẽ trên có mấy cặp tam giác bằng nhau?
A. 0;
B. 1;
C. 2;
Câu 2:
Cho ∆MNP có M^=80°, biết N^−P^=40°. Khi đó số đo của N^ bằng:
A. 75°;
B. 45°;
C. 70°;
Câu 3:
Cho ∆ABC và ∆MNP bằng nhau. Biết số đo các góc như hình vẽ sau:
Số đo của MNP^ bằng:
A. 60°;
C. 30°;
Câu 4:
Cho hình vẽ bên.
Kết luận nào sau đây đúng?
A. ∆ABD = ∆BCD;
B. ∆BAD = ∆CDB;
C. ∆ABD = ∆CBD;
Câu 5:
Cho hình bên.
Số đo của ABD^ bằng:
A. 30°;
C. 60°;
Câu 6:
Cho ∆ABC có AB = AC. Gọi AM là tia phân giác của A^ (M ∈ BC). Kẻ MD vuông góc AB (D ∈ AB) và ME vuông góc với AC (E ∈ AC).
Cho các khẳng định sau:
(I) BMD^=CME^;
(II) ∆MBD = ∆MCE;
(III) AD = AE ;
Gọi m là số kết luận đúng và n là số kết luận sai. Giá trị của m và n là:
A. m = 0 và n = 1;
B. m = 2 và n = 1;
C. m = 3 và n = 0;
Câu 7:
Cho tam giác ABC có AD vuông góc với BC. Biết AB = AC = 3cm, A^=60°. Tính cạnh BC.
A. BC = 6 cm;
B. BC = 1,5 cm;
C. BC = 9 cm;
Câu 8:
Cho ∆ABC có AB = AC (A^<90°). Kẻ BD vuông góc với AC (D ∈ AC) và CE vuông góc với AB (E ∈ AB). Gọi H là giao điểm của BD và CE.
Cho bảng sau:
A
B
a. ∆AEC
1. ∆HDC
b. ∆HEB
2. ∆CDB
c. ∆BEC
3. ∆ADB
Ghép các ý ở cột A với cột B để được một đẳng thức đúng?
A. a – 2; b – 1; c – 3;
B. a – 1; b – 3; c – 2;
C. a – 3; b – 1; c – 2;
Câu 9:
Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC. Kết luận nào sau đây sai?
A. AM = DM;
B. ∆ABM = ∆ADM ;
C. MAD^=MDA^;
Câu 10:
Khẳng định nào sau đây sai?
A. ∆AED = ∆AFD;
B. ∆BED = ∆CFD;
C. ∆ADB = ∆ADC;
Câu 11:
Cho ∆ABC vuông tại A có hai đường trung trực của hai cạnh AB và AC cắt nhau tại D. Vị trí của điểm D là
A. D là trung điểm BC;
B. D là trung điểm của AB;
C. D là trung điểm của AC;
Câu 12:
Cho tam giác ABC cân tại A, có A^=24°. Trên tia đối của tia BC lấy điểm D sao cho ADB^=30°, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Tính BAE^?
A. ABE^=72°
B. ABE^=48°
C. ABE^=78°
D. ABE^=68°
Câu 13:
Cho đoạn thẳng CD. Gọi A là trung điểm của CD. Kẻ một đường thẳng vuông góc với CD tại A. Trên đường thẳng đó, lấy điểm B sao cho BCD^=60°. Khi đó ∆BCD là tam giác gì?
A. Tam giác tù;
B. Tam giác đều;
C. Tam giác vuông cân;
Câu 14:
Cho ∆ABC có B^=2C^. Kẻ đường phân giác BD, từ D kẻ DE //BC (E ∈ AB). Số tam giác cân là:
A. 0
B. 1
C. 2
D. 3
199 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com