Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bắc Ninh
147 người thi tuần này 4.6 341 lượt thi 41 câu hỏi 60 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Căn bậc hai số học của 9 là \(3.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Biểu thức \(\sqrt[3]{{x - 1}}\) có điều kiện xác định là \(x \in \mathbb{R}\).
Lời giải
Đáp án đúng là: B
Với \(a \ge 7,\,\,b \ge 8,\,\,c \ge 9,\) ta có:
\(a + b + c - 21 = 2\left( {\sqrt {a - 7} + \sqrt {b - 8} + \sqrt {c - 9} } \right)\)
\(a + b + c - 21 = 2\sqrt {a - 7} + 2\sqrt {b - 8} + 2\sqrt {c - 9} \)
\(\left( {a - 7 - 2\sqrt {a - 7} + 1} \right) + \left( {b - 8 - 2\sqrt {b - 8} + 1} \right) + \left( {c - 9 - 2\sqrt {c - 9} + 1} \right) = 0\)
\({\left( {\sqrt {a - 7} - 1} \right)^2} + {\left( {\sqrt {b - 8} - 1} \right)^2} + {\left( {\sqrt {c - 9} - 1} \right)^2} = 0\,\,\,\left( * \right)\)
Mà \({\left( {\sqrt {a - 7} - 1} \right)^2} \ge 0,\,\,{\left( {\sqrt {b - 8} - 1} \right)^2} \ge 0,\,\,{\left( {\sqrt {c - 9} - 1} \right)^2} \ge 0\) với mọi \(a \ge 7,\,\,b \ge 8,\,\,c \ge 9.\)
Khi đó từ suy ra
Suy ra \[\sqrt {a - 7} - 1 = 0,\,\,\sqrt {b - 8} - 1 = 0,\,\,\sqrt {c - 9} - 1 = 0\]
Do đó \[a - 7 = 1,\,\,b - 8 = 1,\,\,c - 9 = 1\]
Nên \(a = 8,\,\,b = 9,\,\,c = 10\) (thỏa mãn).
Vậy \(S = a + 2b - c = 8 + 2 \cdot 9 - 10 = 16.\)
Lời giải
Đáp án đúng là: B
Xét hàm số \(y = 2{x^2}\):
⦁ Thay \(x = 2\) vào hàm số trên, ta được: \(y = 2 \cdot {2^2} = 8 \ne 1\) nên điểm \(\left( {2;1} \right)\) không thuộc đồ thị hàm số \(y = 2{x^2}.\)
⦁ Thay \(x = 1\) vào hàm số trên, ta được: \(y = 2 \cdot {1^2} = 2\) nên điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số \(y = 2{x^2}\) và điểm \(\left( {1;4} \right)\) không thuộc đồ thị hàm số \(y = 2{x^2}.\)
⦁ Thay \(x = 4\) vào hàm số trên, ta được: \(y = 2 \cdot {4^2} = 32 \ne 1\) nên điểm \(\left( {4;1} \right)\) không thuộc đồ thị hàm số \(y = 2{x^2}.\)
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: D
Quan sát hình vẽ, ta thấy parabol \(y = a{x^2}\) đi qua điểm \(\left( {1;\,\,0,5} \right)\) nên ta có:
\(0,5 = a \cdot {1^2},\) suy ra \(a = 0,5.\)
Khi đó, ta có hàm số \(y = 0,5{x^2}.\)
⦁ Thay \(x = - 1\) vào hàm số trên, ta được: \(y = 0,5 \cdot {\left( { - 1} \right)^2} = 0,5 \ne 1.\) Do đó parabol không đi qua điểm \(\left( { - 1;1} \right)\).
⦁ Thay \(x = 2\) vào hàm số trên, ta được: \(y = 0,5 \cdot {2^2} = 2.\) Do đó parabol đi qua điểm \(\left( {2;2} \right)\) và không đi qua điểm \(\left( {2;\,\, - 2} \right)\).
⦁ Thay \(x = 0,5\) vào hàm số trên, ta được: \(y = 0,5 \cdot {\left( {0,5} \right)^2} = 0,125 \ne 1.\) Do đó parabol không đi qua điểm \(\left( {0,5;1} \right)\).
Vậy ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 1
Câu 34-35: (1,0 điểm) Cho phương trình \({x^2} + 2x + m - 1 = 0\) \((1)\) (với \(m\) là tham số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 2
Câu 37-39: (2,0 điểm) Cho tứ giác \(ABCD\) nội tiếp đường tròn tâm \(O\) đường kính \(AD.\) Gọi \(H\) là giao điểm của \(AC\) và \(BD,\) kẻ \(HK \bot AD\,\,\left( {K \in AD} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
68 Đánh giá
50%
40%
0%
0%
0%