Câu hỏi:

11/07/2024 1,355

Cho đa thức P(x) = x3 + 64. Tìm nghiệm của P(x) trong tập hợp {0; 4; –4}.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1: Xét đa thức P(x) = x3 + 64.

• Với x = 0 thay vào P(x) ta có:

P(0) = 03 + 64 = 64.

Do đó x = 0 không là nghiệm của P(x).

• Với x = 4 thay vào P(x) ta có:

P(4) = 43 + 64 = 64 + 64 = 128.

Do đó x = 4 không là nghiệm của P(x).

• Với x = –4 thay vào P(x) ta có:

P(–4) = (–4)3 + 64 = –64 + 64 = 0.

Do đó x = –4 là nghiệm của P(x).

Vậy trong các số thuộc tập hợp {0; 4; –4} thì có –4 là nghiệm của P(x).

Cách 2: Xét đa thức P(x) = x3 + 64.

Ta có P(x) = 0

Hay x3 + 64 = 0

Suy ra x3 = –64 = (–4)3

Do đó x = –4.

Vậy trong các số thuộc tập hợp {0; 4; –4} thì số –4 là nghiệm của P(x).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Thực hiện phép chia.

(3x3 – 2x2 + 3x – 2) : (x2 + 1).

Xem đáp án » 11/07/2024 4,729

Câu 2:

Thực hiện phép chia.

(2x3 + 3x2 + 3x + 4) : (x2 + 2).

Xem đáp án » 11/07/2024 3,121

Câu 3:

Thực hiện phép chia.

(5t2 – 8t + 3) : (t – 1).

Xem đáp án » 11/07/2024 1,632

Câu 4:

Thực hiện phép chia.

(x4 + 6x2 + 8) : (x2 + 2);

Xem đáp án » 11/07/2024 1,576

Câu 5:

Trong các biểu thức sau, biểu thức nào là đơn thức một biến?

a) 2y;          b) 3x + 5;              c) 12;          d) \(\frac{1}{3}\)t2.

Xem đáp án » 11/07/2024 1,463

Câu 6:

Cho B = xy3 + 4xy – 2x2 + 3. Tính giá trị của biểu thức B khi x = –1, y = 2.

Xem đáp án » 11/07/2024 1,169

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store