Giải SBT Toán 7 CTST Bài 35. Tính chất ba đường cao của tam giác có đáp
34 người thi tuần này 4.6 1.2 K lượt thi 5 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Gọi M là giao điểm của AC và BD.
Xét tam giác MAB có E là giao điểm của hai đường cao AD và BC nên E là trực tâm của tam giác MAB.
Khi đó ME là đường cao kẻ từ đỉnh M của tam giác AMB, tức là ME ⊥ AB.
Mà EK ⊥ AB.
Do đó EK đi qua điểm M.
Vậy AC, EK và BD cùng đi qua điểm M.
Lời giải
Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.
Vì AM là trung tuyến của tam giác ABC nên BM = CM.
Xét ΔAMB và ΔAMC có:
Cạnh AM là cạnh chung,
AB = AC (chứng minh trên),
BM = CM (chứng minh trên).
Do đó ΔAMB = ΔAMC (c.c.c).
Suy ra (hai góc tương ứng).
Lại có (hai góc kề bù).
Nên .
Hay AM ⊥ BC.
Mà d ⊥ AM (giả thiết).
Suy ra d // BC (dấu hiệu nhận biết hai đường thẳng song song).
Vậy d // BC.
Lời giải
Vì tam giác ABC cân tại A nên AB = AC.
Mà AB = AD (vì A là trung điểm của BD).
Suy ra AC = AD = AB.
Xét ΔAEB và ΔAEC có:
,
Cạnh AE là cạnh chung,
AB = AC (chứng minh trên).
Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Xét ΔACF và ΔADF có:
,
Cạnh AF là cạnh chung,
AC = AD (chứng minh trên).
Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Ta có
Mà , (chứng minh trên).
Suy ra
Hay
Do đó .
Vậy góc EAF vuông.
Lời giải
Trong tam giác vuông ABE ta có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Mà nên .
Trong tam giác vuông BAF ta có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Mà nên .
Trong DAHB ta có: (tổng ba góc trong một tam giác).
Suy ra .
Vậy
Lời giải
Vẽ hai đường cao BE và CF của tam giác ABC.
Trong DBHC có: (tổng ba góc trong một tam giác).
Suy ra
Trong DCBE vuông tại E có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Nên (1)
Trong DCBF vuông tại F có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Nên (2)
Từ (1) và (2) ta có:
Hay
Do tam giác ABC cân tại A nên ta có:
.
Trong DABC có: (tổng ba góc trong một tam giác).
Suy ra .
Vậy ,
241 Đánh giá
50%
40%
0%
0%
0%