Giải SBT Toán 7 CTST Bài 35. Tính chất ba đường cao của tam giác có đáp
27 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
30 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 1 có đáp án
17 Bài tập Xác định các cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía trên hình vẽ cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Gọi M là giao điểm của AC và BD.
Xét tam giác MAB có E là giao điểm của hai đường cao AD và BC nên E là trực tâm của tam giác MAB.
Khi đó ME là đường cao kẻ từ đỉnh M của tam giác AMB, tức là ME ⊥ AB.
Mà EK ⊥ AB.
Do đó EK đi qua điểm M.
Vậy AC, EK và BD cùng đi qua điểm M.
Lời giải
Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.
Vì AM là trung tuyến của tam giác ABC nên BM = CM.
Xét ΔAMB và ΔAMC có:
Cạnh AM là cạnh chung,
AB = AC (chứng minh trên),
BM = CM (chứng minh trên).
Do đó ΔAMB = ΔAMC (c.c.c).
Suy ra (hai góc tương ứng).
Lại có (hai góc kề bù).
Nên .
Hay AM ⊥ BC.
Mà d ⊥ AM (giả thiết).
Suy ra d // BC (dấu hiệu nhận biết hai đường thẳng song song).
Vậy d // BC.
Lời giải
Vì tam giác ABC cân tại A nên AB = AC.
Mà AB = AD (vì A là trung điểm của BD).
Suy ra AC = AD = AB.
Xét ΔAEB và ΔAEC có:
,
Cạnh AE là cạnh chung,
AB = AC (chứng minh trên).
Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Xét ΔACF và ΔADF có:
,
Cạnh AF là cạnh chung,
AC = AD (chứng minh trên).
Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Ta có
Mà , (chứng minh trên).
Suy ra
Hay
Do đó .
Vậy góc EAF vuông.
Lời giải
Trong tam giác vuông ABE ta có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Mà nên .
Trong tam giác vuông BAF ta có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Mà nên .
Trong DAHB ta có: (tổng ba góc trong một tam giác).
Suy ra .
Vậy
Lời giải
Vẽ hai đường cao BE và CF của tam giác ABC.
Trong DBHC có: (tổng ba góc trong một tam giác).
Suy ra
Trong DCBE vuông tại E có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Nên (1)
Trong DCBF vuông tại F có: (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).
Nên (2)
Từ (1) và (2) ta có:
Hay
Do tam giác ABC cân tại A nên ta có:
.
Trong DABC có: (tổng ba góc trong một tam giác).
Suy ra .
Vậy ,