Câu hỏi:
13/07/2024 1,203Cho tam giác MNP cân tại P. Lấy điểm A trên cạnh PM, điểm B trên cạnh PN sao cho PA = PB. Gọi O là giao điểm của NA và MB. Chứng minh tam giác OMN là tam giác cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì DMNP cân tại P nên ta có:
PM = PN (hai cạnh bên), (hai góc ở đáy).
Ta có PM = PA + AM, PN = PB + BN.
Mà PM = PN (chứng minh trên), PA = PB (giả thiết).
Suy ra AM = BN.
Xét DAMN và DBNM có:
AM = BN (chứng minh trên),
MN là cạnh chung,
(do )
Do đó ∆AMN = ∆BNM (c.g.c).
Suy ra (hai góc tương ứng).
Hay
Do đó tam giác ONM cân tại O.
Vậy tam giác OMN là tam giác cân tại O.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A có . Trên cạnh BC lấy các điểm D, E sao cho BD = BA, CE = CA.
a) Chứng minh các tam giác BAD, CAE, AED là các tam giác cân.
Câu 2:
Cho tam giác ABC. Trên cạnh BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE = BD. Gọi O là giao điểm của DE và BC. Biết OD = OE. Chứng minh tam giác ABC là tam giác cân.
Câu 3:
Cho tam giác ABC cân tại A có . Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM.
Câu 4:
Ở Hình 36 có AB song song cới CD, BC song song với AD. Tia phân giác của góc BAD cắt BC tại E và cắt tia DC tại F.
a) Chứng minh các tam giác ABE, CEF, DAF là các tam giác cân.
Câu 5:
Cho tam giác đều ABC. Gọi E, D, F là ba điểm lần lượt nằm trên ba cạnh AB, AC, BC sao cho AD = CF = BE. Chứng minh tam giác DEF là tam giác đều.
Câu 6:
Cho tam giác ABC. Gọi I là trung điểm của BC. Tính số đo góc BAC, biết IA = IB = IC.
về câu hỏi!