Câu hỏi:

12/07/2024 935

Chứng minh rằng:

a) Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên là hai đoạn thẳng bằng nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh rằng:  a) Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên là (ảnh 1)
Giả sử tam giác ABC cân tại A có M, N lần lượt là trung điểm của AB và AC.

a) Do tam giác ABC cân tại A nên AB = AC và ABC^=ACB^ (tính chất tam giác cân).

Vì M là trung điểm của AB nên AM = 12AB;

Vì N là trung điểm của AC nên AN = 12AC.

Mà AB = AC nên AM = AN

Xét ΔANB ΔAMC có:

AM = AN (chứng minh trên).

AB = AC (chứng minh trên).

BAC^ chung

Suy ra ΔANB=ΔAMC (c - g - c).

Do đó BN = MC (2 cạnh tương ứng).

Vậy trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên là hai đoạn thẳng bằng nhau.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G. Hãy tìm số  (ảnh 1)

Vì G là trọng tâm của tam giác ABC nên ta có:

BG = 23BN; CG = 23CP.

Ta có: BG + GN = BN mà BG = 23BN nên GN + 23BN = BN. Do đó, GN = 13BN.

Ta có: CG + GP = CP mà CG = 23CP nên GP + 23CP = CP. Do đó, GN = 13CP.

BG : GN = 23BN : 13BN = 2

CG : GP = 23CP : 13CP = 2

Do đó, BG = 2GN; CG = 2GP.

Vậy BG = 23BN, CG = 23CP, BG = 2 GN, CG = 2 GP.

Lời giải

Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC biết góc (ảnh 1)

Xét ΔABC CAB^+ABC^+ACB^=180° (định lí tổng ba góc trong một tam giác).

Do đó:

ABC^+ACB^=180°CAB^ 

= 180o - 120o = 60o.

Do BI là tia phân giác của ABC^ nên ABC^=2IBC^.

Do CI là tia phân giác của ACB^ nên ACB^=2ICB^.

Do đó ABC^+ACB^=2IBC^+ICB^.

hay 60o = 2IBC^+ICB^.

IBC^+ICB^ = 60o : 2 = 30o.

Xét ΔIBC BIC^+IBC^+ICB^=180°.

Do đó BIC^=180°IBC^+ICB^ = 180o - 30o = 150o.

Vậy BIC^ = 150o.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay