Câu hỏi:

13/07/2024 873

Cho hình bình hành ABCD có M,N lần lượt là trung điểm của AB và CD. Gọi P,Q thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh rằng:DP=PQ=QB

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Áp dụng định nghĩa và giả thiết vào hình bình hành ,
ta được:

AM=NC,AMNC.

Tứ giác AMCN  có hai cạnh đối song song và bằng nhau nên
nó là hình bình hành, do đó MCAN , suy ra

MQAP,PNQC.

Áp dụng định lí Ta-lét vào hai tam giác APB  DQC  MQAP,PNQC , ta được:

 BQQP=BMMA=1BQ=QP(1).

DPPQ=DNNC=1DP=PQ (2)

Từ (1) và (2) ta có:DP=PQ=QB .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi I là giao điểm của đường chéo AC với MN.

Áp dụng định lí Ta-lét vào hai tam giác ACD   ACB
MICD,INAB , ta được:

AMMD=AIIC (1); BNNC=AIIC  (2).

Từ (1) và (2) suy ra:AMMD=BNNC .

Lời giải

Áp dụng định lí Ta-lét vào hai tam giác ACD và ACB ta có MICD,INAB ta được

 AMAD=AIAC(3); CNCB=CICA  (4).

Cộng theo vế các đẳng thức (3) và (4), thu được:AMAD+CNCB=CI+AICA=CACA=1

Media VietJack