Câu hỏi:

13/10/2022 792

c. Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là trung trực của AB vừa là trung trực của DC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) ΔOAB cân tại O từ đó ta có OA=OBIA=IBOI là đường trung trực của AB

ΔODC cân tại O từ đó ta có OC=ODIA=IBOI là đường trung trực của CD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang  ABCD (AB // CD)   . AC cắt BD tại O. Biết OA = OB  . Chứng minh rằng:  ABCD là hình thang cân. (ảnh 1)

Vì OA = OB nên tam giác OAB cân tại O

OAB^=OBA^ 

Ta có OCD^=OAB^=OBA^=ODC^ 

=> tam giác OCD cân tại O => OC = OD 

Suy ra AC=OA+OC=OB+OD=BD 

Hình thang ABCD có hai đường chéo AC và BD bằng nhau nên ABCD là hình thang cân.

Lời giải

Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O. a) Chứng minh rằng OAB cân (ảnh 1)

a) Vì ABCD là hình thang cân nên  C^=D^ suy ra OCD là tam giác cân.

Ta có OAB^=D^=C^=OBA^  (hai góc đồng vị)

=> Tam giác OAB cân tại O.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP